Home
Class 11
MATHS
If z =(1)/((2-3i)^(2)) then |z| is equal...

If z =`(1)/((2-3i)^(2))` then |z| is equal to

A

`(1)/(13)`

B

`(1)/(12)`

C

`(1)/(5)`

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of \( z = \frac{1}{(2 - 3i)^2} \), we will follow these steps: ### Step 1: Calculate \( (2 - 3i)^2 \) Using the formula for the square of a binomial, \( (a - b)^2 = a^2 - 2ab + b^2 \): \[ (2 - 3i)^2 = 2^2 - 2 \cdot 2 \cdot 3i + (3i)^2 \] Calculating each term: - \( 2^2 = 4 \) - \( -2 \cdot 2 \cdot 3i = -12i \) - \( (3i)^2 = 9i^2 = 9(-1) = -9 \) Putting it all together: \[ (2 - 3i)^2 = 4 - 12i - 9 = -5 - 12i \] ### Step 2: Substitute back into \( z \) Now we substitute back into the expression for \( z \): \[ z = \frac{1}{-5 - 12i} \] ### Step 3: Multiply by the conjugate To simplify \( z \), we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{1 \cdot (-5 + 12i)}{(-5 - 12i)(-5 + 12i)} \] Calculating the denominator: \[ (-5 - 12i)(-5 + 12i) = (-5)^2 - (12i)^2 = 25 - 144(-1) = 25 + 144 = 169 \] So we have: \[ z = \frac{-5 + 12i}{169} \] ### Step 4: Find the modulus of \( z \) The modulus of a complex number \( a + bi \) is given by \( |z| = \sqrt{a^2 + b^2} \). In our case: \[ z = \frac{-5}{169} + \frac{12i}{169} \] Thus, \( a = -\frac{5}{169} \) and \( b = \frac{12}{169} \). Calculating the modulus: \[ |z| = \sqrt{\left(-\frac{5}{169}\right)^2 + \left(\frac{12}{169}\right)^2} \] Calculating each square: \[ \left(-\frac{5}{169}\right)^2 = \frac{25}{28561} \] \[ \left(\frac{12}{169}\right)^2 = \frac{144}{28561} \] Adding these: \[ |z| = \sqrt{\frac{25 + 144}{28561}} = \sqrt{\frac{169}{28561}} = \frac{\sqrt{169}}{\sqrt{28561}} = \frac{13}{169} \] ### Step 5: Final result Thus, the modulus of \( z \) is: \[ |z| = \frac{1}{13} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 , then |z| is equal to

Let z be a complex number such that |z|+z=3+I (Where i=sqrt(-1)) Then ,|z| is equal to

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

Let |z_(1)|=3, |z_(2)|=2 and z_(1)+z_(2)+z_(3)=3+4i . If the real part of (z_(1)bar(z_(2))+z_(2)bar(z_(3))+z_(3)bar(z_(1))) is equal to 4, then |z_(3)| is equal to (where, i^(2)=-1 )

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

If (2z_(1))/(3z_(2)) is purely imaginary number, then |(z_(1)-z_(2))/(z_(1)+z_(2))|^(4) is equal to

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.