Home
Class 11
MATHS
If z = 1 -cos theta+ isin theta then |...

If z = 1 -cos `theta+ isin theta ` then |z| is equal to

A

`2 sin"" (theta)/(2)`

B

`2 cos ""(theta)/(2)`

C

`2| sin""(theta)/(2)|`

D

`2 |cos ""(theta)/(2)|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the complex number \( z = 1 - \cos \theta + i \sin \theta \), we will follow these steps: ### Step 1: Write down the expression for \( z \) Given: \[ z = 1 - \cos \theta + i \sin \theta \] ### Step 2: Use the formula for the modulus of a complex number The modulus of a complex number \( z = a + bi \) is given by: \[ |z| = \sqrt{a^2 + b^2} \] In our case, \( a = 1 - \cos \theta \) and \( b = \sin \theta \). ### Step 3: Substitute \( a \) and \( b \) into the modulus formula Now, we can calculate the modulus: \[ |z| = \sqrt{(1 - \cos \theta)^2 + (\sin \theta)^2} \] ### Step 4: Expand the expression Expanding \( (1 - \cos \theta)^2 \): \[ (1 - \cos \theta)^2 = 1 - 2\cos \theta + \cos^2 \theta \] Thus, \[ |z| = \sqrt{1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta} \] ### Step 5: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ |z| = \sqrt{1 - 2\cos \theta + 1} = \sqrt{2 - 2\cos \theta} \] ### Step 6: Factor out the common term We can factor out the 2: \[ |z| = \sqrt{2(1 - \cos \theta)} \] ### Step 7: Use the double angle formula Recall that \( 1 - \cos \theta = 2\sin^2\left(\frac{\theta}{2}\right) \): \[ |z| = \sqrt{2 \cdot 2\sin^2\left(\frac{\theta}{2}\right)} = \sqrt{4\sin^2\left(\frac{\theta}{2}\right)} \] ### Step 8: Simplify the expression Taking the square root: \[ |z| = 2|\sin\left(\frac{\theta}{2}\right)| \] ### Final Answer Thus, the modulus of \( z \) is: \[ |z| = 2|\sin\left(\frac{\theta}{2}\right)| \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

If z=1-costheta+isintheta,\ t h e n\ |z| is equal to a. 2sin(theta/2) b. 2cos(theta/2) c. 2\ |sin(theta/2)| d. 2\ |cos(theta/2)|

If a = cos theta + isin theta , then find the value of (1 +a)/(1-a) .

If pi < theta < 2pi and z=1+cos theta + i sin theta , then write the value of |z|

If z=1/(1-cos theta-i sin theta), then Re(z) is a. 0 b. 1/2 c. cot(theta/2) d. 1/2 cot (theta/2)

lf cos 5theta-acos^5 theta + b cos^3 theta + c cos theta then c is equal to-

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

If z = (3)/( 2 + cos theta + I sin theta) , then prove that z lies on the circle.

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

If tan 3 theta + tan theta =2 tan 2 theta , then theta is equal to (n in Z)

If a = cos theta + isin theta , b = cosphi + isinphi , c = cos psi + i sin psi and a/b+b/c+c/a=2 then sin(theta-phi)+sin(phi-psi)+sin(psi-theta) equals