Home
Class 11
MATHS
If z = (1-i)/(1+i) then z^(4) equals...

If z `= (1-i)/(1+i)` then `z^(4)` equals

A

1

B

`-1`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( z = \frac{1 - i}{1 + i} \) and we need to find \( z^4 \), we can follow these steps: ### Step 1: Simplify \( z \) We start with the expression for \( z \): \[ z = \frac{1 - i}{1 + i} \] To simplify this, we can multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(1 - i)(1 - i)}{(1 + i)(1 - i)} \] ### Step 2: Calculate the denominator Calculating the denominator: \[ (1 + i)(1 - i) = 1^2 - i^2 = 1 - (-1) = 1 + 1 = 2 \] ### Step 3: Calculate the numerator Now, calculating the numerator: \[ (1 - i)(1 - i) = 1^2 - 2 \cdot 1 \cdot i + i^2 = 1 - 2i - 1 = -2i \] ### Step 4: Combine results Now we can combine the results: \[ z = \frac{-2i}{2} = -i \] ### Step 5: Calculate \( z^2 \) Next, we find \( z^2 \): \[ z^2 = (-i)^2 = (-1)^2 \cdot i^2 = 1 \cdot (-1) = -1 \] ### Step 6: Calculate \( z^4 \) Now we can find \( z^4 \) by squaring \( z^2 \): \[ z^4 = (z^2)^2 = (-1)^2 = 1 \] ### Final Answer Thus, the value of \( z^4 \) is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • CIRCLES

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|24 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

If z = (1)/((2-3i)^(2)) then |z| is equal to

If z= 1/((1+i)(1-2i)) , then |z| is

if (1+i)z=(1-i)barz then z is

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

Let z be a complex number such that |z|+z=3+I (Where i=sqrt(-1)) Then ,|z| is equal to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If (1+i)z = (1-i)barz, "then show that "z = -ibarz.