Home
Class 14
MATHS
(1001xx1002xx1003)/(27) find R....

`(1001xx1002xx1003)/(27)` find R.

Text Solution

AI Generated Solution

The correct Answer is:
To find the remainder \( R \) when \( \frac{1001 \times 1002 \times 1003}{27} \), we can follow these steps: ### Step 1: Find the remainders of each number when divided by 27. 1. **Calculate \( 1001 \mod 27 \)**: - Divide \( 1001 \) by \( 27 \): \[ 1001 \div 27 \approx 37.037 \quad \text{(take the integer part, which is 37)} \] - Multiply \( 27 \) by \( 37 \): \[ 27 \times 37 = 999 \] - Subtract from \( 1001 \): \[ 1001 - 999 = 2 \] - Thus, \( 1001 \mod 27 = 2 \). 2. **Calculate \( 1002 \mod 27 \)**: - Divide \( 1002 \) by \( 27 \): \[ 1002 \div 27 \approx 37.067 \quad \text{(take the integer part, which is 37)} \] - Multiply \( 27 \) by \( 37 \): \[ 27 \times 37 = 999 \] - Subtract from \( 1002 \): \[ 1002 - 999 = 3 \] - Thus, \( 1002 \mod 27 = 3 \). 3. **Calculate \( 1003 \mod 27 \)**: - Divide \( 1003 \) by \( 27 \): \[ 1003 \div 27 \approx 37.096 \quad \text{(take the integer part, which is 37)} \] - Multiply \( 27 \) by \( 37 \): \[ 27 \times 37 = 999 \] - Subtract from \( 1003 \): \[ 1003 - 999 = 4 \] - Thus, \( 1003 \mod 27 = 4 \). ### Step 2: Multiply the remainders. Now we have: - \( 1001 \mod 27 = 2 \) - \( 1002 \mod 27 = 3 \) - \( 1003 \mod 27 = 4 \) Now, multiply these remainders: \[ R = (2 \times 3 \times 4) \mod 27 \] Calculating: \[ 2 \times 3 = 6 \] \[ 6 \times 4 = 24 \] ### Step 3: Find the remainder of the product when divided by 27. Now we need to find \( 24 \mod 27 \): \[ 24 \div 27 = 0 \quad \text{(the integer part is 0)} \] Thus, the remainder is simply \( 24 \). ### Final Answer: The remainder \( R \) when \( \frac{1001 \times 1002 \times 1003}{27} \) is: \[ \boxed{24} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos
  • MOCK TEST II

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MCQ|100 Videos
  • PARTNERSHIP

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Questions|26 Videos

Similar Questions

Explore conceptually related problems

(661xx662xx660)/(17) find R.

Find the remainder in expression– (1001 xx 1002 xx 1003 xx 1004)/(27)

The unit's digit of 3^(1001)xx7^(1002)xx13^(1003)

Simplify the following using the identities: (198 xx 198-102 xx 102)/(96) (ii) 1. 73 xx 1. 73-0. 27 xx 0. 27

The remainder when the determinant [[999^(999),1000^(1000),1001^(1001)1002^(1002),1003^(1003),1004^(1004)1005^(1005),1006^(1006),1007^(1007)]| is divided by 5 is

What is the value of (1.001 xx 1.001 xx 1.001 +0.999 xx 0.999 xx 0.999)/(1.001 xx 1.001-1.001 xx 0.999 +0.999 xx 0.999) ?

if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n

If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27) , then find m-n .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-NUMBER SYSTEM -MULTIPLE CHOICE QUESTIONS
  1. (1001xx1002xx1003)/(27) find R.

    Text Solution

    |

  2. If p & q are relatively prime number in such a way p + q = 10 & p lt ...

    Text Solution

    |

  3. If x^(2) - 5y^(2) = 1232, how many pairs are possible for (x, y)

    Text Solution

    |

  4. IF x is a real number x^(7)-x^(3)=1232. Find how many values are possi...

    Text Solution

    |

  5. IF n is a three digit number and last two digits of square of n are 54...

    Text Solution

    |

  6. If a six digit number is formed by repeating a three digit number (e.g...

    Text Solution

    |

  7. If a six digit number is formed by repeating a two digit number three ...

    Text Solution

    |

  8. If a four digit number is formed by repeating a two digit number two t...

    Text Solution

    |

  9. If a number 45678x9231 is divisible by 3, then how many values are pos...

    Text Solution

    |

  10. If a number 67235x489 is divisible by 9, then find the value of x.

    Text Solution

    |

  11. If a number 6784329x145 is divisible by 11, then find the value of x.

    Text Solution

    |

  12. What will come in place of unit digit in the value of (7)^(35) xx (3)^...

    Text Solution

    |

  13. Find the unit digit of expression (259)^123 – (525)^111 – (236)^122 – ...

    Text Solution

    |

  14. Find the unit digit of expression (599)^122 – (125)^625 – (144)^124 + ...

    Text Solution

    |

  15. Find the unit digit of expression (216) ^1000× (625) ^2000×(514) ^3000...

    Text Solution

    |

  16. Find the unit digit of expression (823)^(933!) × (777)^(223!) × (838)^...

    Text Solution

    |

  17. Find the unit digit of expression 125^813 * 553^3703 * 4537^828?

    Text Solution

    |

  18. Find the unit digit of expression (232)^(123!) × (353)^(124!) × (424)^...

    Text Solution

    |

  19. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  20. The last digit of the following expreesion is : (1!)^1 + (2!)^(2) + ...

    Text Solution

    |

  21. Find the unit digit in the expression :(1!)^(1!) + (2!)^(2!) + (3!)^(3...

    Text Solution

    |