Home
Class 14
MATHS
If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)...

If `(cos^(4)alpha)/(cos^(2)beta)+(sin^(4)beta)/(sin^(2)alpha)=1`, then `(cos^(6)beta)/(cos^(4)alpha)+(sin^(6)alpha)/(sin^(4)beta)=`?

A

4

B

0

C

`1//8`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\cos^4 \alpha}{\cos^2 \beta} + \frac{\sin^4 \beta}{\sin^2 \alpha} = 1 \] We need to find the value of: \[ \frac{\cos^6 \beta}{\cos^4 \alpha} + \frac{\sin^6 \alpha}{\sin^4 \beta} \] ### Step 1: Substitute values for \(\alpha\) and \(\beta\) Since there are no specific conditions given for \(\alpha\) and \(\beta\), we can assume values for simplicity. Let's take: \[ \alpha = \beta = 45^\circ \] ### Step 2: Calculate \(\cos^2 \alpha\) and \(\sin^2 \alpha\) Using the values of trigonometric functions at \(45^\circ\): \[ \cos 45^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}} \] Thus: \[ \cos^2 45^\circ = \sin^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] ### Step 3: Verify the initial condition Substituting \(\alpha\) and \(\beta\) into the initial equation: \[ \frac{\left(\frac{1}{2}\right)^2}{\frac{1}{2}} + \frac{\left(\frac{1}{2}\right)^2}{\frac{1}{2}} = \frac{\frac{1}{4}}{\frac{1}{2}} + \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} + \frac{1}{2} = 1 \] This confirms that our assumption satisfies the initial condition. ### Step 4: Calculate the required expression Now substituting \(\alpha\) and \(\beta\) into the expression we need to evaluate: \[ \frac{\cos^6 45^\circ}{\cos^4 45^\circ} + \frac{\sin^6 45^\circ}{\sin^4 45^\circ} \] Calculating each term: 1. **First term**: \[ \frac{\cos^6 45^\circ}{\cos^4 45^\circ} = \frac{\left(\frac{1}{\sqrt{2}}\right)^6}{\left(\frac{1}{\sqrt{2}}\right)^4} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{8} \cdot 4 = \frac{1}{2} \] 2. **Second term**: \[ \frac{\sin^6 45^\circ}{\sin^4 45^\circ} = \frac{\left(\frac{1}{\sqrt{2}}\right)^6}{\left(\frac{1}{\sqrt{2}}\right)^4} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{8} \cdot 4 = \frac{1}{2} \] ### Step 5: Add the two terms Now, adding both terms: \[ \frac{1}{2} + \frac{1}{2} = 1 \] ### Conclusion Thus, the value of \[ \frac{\cos^6 \beta}{\cos^4 \alpha} + \frac{\sin^6 \alpha}{\sin^4 \beta} = 1 \] ### Final Answer The answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST - 3

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Multiple Choice Question |98 Videos
  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos

Similar Questions

Explore conceptually related problems

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=?

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then the value of (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha) is

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 prove that (i)sin^(4)alpha+sin^(4)beta=2sin^(2)alpha sin^(2)beta(ii)(cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=1

2sin^(2)beta+4cos(alpha+beta)sinalphasinbeta+cos2(alpha+beta)=?

(cos alpha-cos beta) / (sin beta-sin alpha) = tan ((alpha + beta) / (2))

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

If f(alpha, beta) = cos^(4)alpha/cos^(2)beta + sin^(4)alpha/sin^(2)beta then prove that f(alpha, beta) =1 ⇔ f(beta, alpha) =1 .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-MOCK TEST II-MCQ
  1. A, B, C are three point on a circle. The tangent at A meets BC produce...

    Text Solution

    |

  2. A person wanted to buy some chairs whose cost was Rs.300 each. Seller ...

    Text Solution

    |

  3. If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)beta)/(sin^(2)alpha)=1, then (...

    Text Solution

    |

  4. If the simple interest on Rs. 800 be more than the interest on Rs. 400...

    Text Solution

    |

  5. If a^(x)=b,b^(y)=candxyz=2, then c^(z)=?

    Text Solution

    |

  6. In covering a distance of 30 km Abhay takes 2 hours more than Samee...

    Text Solution

    |

  7. Anu can complete a work in 10 days. Manu is 25% more efficient than An...

    Text Solution

    |

  8. The LCM of two positive integers is thrice the larger number. The diff...

    Text Solution

    |

  9. A tap can fill a bath in 20 minutes and another tap can fill it in 30 ...

    Text Solution

    |

  10. If 2^(x) = 4^(y) = 8^(z) and xyz = 288, the value of 1/(2x) + 1/(4y) +...

    Text Solution

    |

  11. If the base of a parallelogram is (x + 4), altitude to the base (x-3) ...

    Text Solution

    |

  12. A solid spherical ball is prepared by melting a cone and a cylinder ha...

    Text Solution

    |

  13. (3)/(4)-(5)/(4^(2))+(3)/(4^(3))-(5)/(4^(4))+(3)/(4^(5))-(5)/(4^(6))+.....

    Text Solution

    |

  14. If lines 3y+4x=1,y=x+5and5y+bx-3=0 are concurrent, then the value of ...

    Text Solution

    |

  15. If x^(2)(x+y+z)=36,y^(2)(x+y+z)=46, z^(2)(x+y+z)=63,xy(x+y+z)=111,...

    Text Solution

    |

  16. If 5costheta+3cos(theta+(pi)/(3))+"sin"^(2)(pi)/(3)-2=A then value of...

    Text Solution

    |

  17. If A lies in the third quardrant and 3 tan A -4 =0 , then 5 sin 2A+3 s...

    Text Solution

    |

  18. 1/4[sqrt(3)cos2 3^(@)-sin2 3^(@)]=

    Text Solution

    |

  19. In a triangle aBC , angleB=2angleC.AD and BE bisectors of angleBACanda...

    Text Solution

    |

  20. The ratio of the length of the diagonal of rhombus is 2 : 5 . Then, th...

    Text Solution

    |