Home
Class 12
MATHS
If y=(e^(x))/(x) then prove that x(dy)/(...

If `y=(e^(x))/(x)` then prove that `x(dy)/(dx)=y (x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

if e^(-y)y=x then prove that (dy)/(dx)=(y)/(x(1-y))

If (x-y)e^((x)/(x-y))=a, prove that (dy)/(dx)+x=2y

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If sec((x+y)/(x-y))=a, prove that (dy)/(dx)=(y)/(x)