Home
Class 12
MATHS
(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx...

`(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (e ^ (x) + e ^ (- x)) / (e ^ (x) -e ^ (- x)) dx

If y =(e^(x) +e^(-x))/( e^(x) - e^(-x)) ,then (dy)/(dx) =

int (e ^ (x) -e ^ (- x)) / (e ^ (x) + e ^ (- x)) * dx

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)) ,then (dy)/(dx) =

int (e ^ (x-1) + x ^ (e-1)) / (e ^ (x) + x ^ (e)) dx e- dx

Solve: ((e^(x)+e^(-x))dy)/(dx)=(e^(x)-e^(-x))

(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +e^(-3x)))

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

Differentiate (e^(x)+e^(-x))/(e^(x)-e^(-x))