Home
Class 12
MATHS
If y = x ^(n-1) log x, then xy (1)=...

If `y = x ^(n-1) log x,` then `xy _(1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(n-1) log x , prove that (x^2y_2)+(3-2n)xy_1+(n-1)^2 .y=0 where y_1=dy/dx and y_2=(d^2)/(dx^2) .

If y=x^(n-1)ln x then x^(2)y_(2)+(3-2n)xy_(1) is equal to -(n-1)^(2)y(b)(n-1)^(2)y-n^(2)y(d)n^(2)y

If y=log(logx)," then "xy_(2)+x(y_(1))^(2)=

If log(x+y)=2xy then y'(0)=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If y = a cos (log x) -b sin (log x), thenx ^ (2) y_ (2) + xy_ (1) + y =

If y=x^(n){a cos(log x)+b sin(log x)}, prove that x^(2)(d^(2)y)/(dx^(2))+(1-2n)(dy)/(dx)+(1+n^(2))y=0

If log (x+y) =log (xy ) +a, then (dy)/(dx) =

If y=((x)/(n))^(nx)(1+(log x)/(n)), then y'(n) is given by