Home
Class 12
MATHS
Let F: (0,2) to R be defined as f (x) = ...

Let `F: (0,2) to R` be defined as `f (x) = log _(2) (1 + tan ((pix)/(4))).`
Then `lim _( n to oo) (2)/(n) (f ((1)/(n )) + f ((2)/(n)) + …+ f (1) ) ` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_2(1+tan((pix)/4)) . Find lim_(nrarroo)2/n(f(1/n)+f(2/n)+ . . . + f(1))

If f : R to R is given f (x) = x +1, then the value of lim _( b - oo) (1)/(n) [ f (0) + f ((5)/(n)) + f ((10)/(n)) +...+ f ((5 ( n -1))/( n )) ], is :

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f:N rarr N be defined by f(x)=x^(2)+x+1,x in N. Then is f is

if f(x)=x^(n) then f(1)+f'(1)/(1!)+f''(1)/(2!)+...+(f^(n)(1))/(n!) is equal to

If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

If f:(1, oo) to (2,oo) is given by f(n) = n+1 , then f^-1 (n) equals to?

If f(x) is continuous in [0,1] and f((1)/(2))=1 prove that lim_(n rarr oo)f((sqrt(n))/(2sqrt(n+1)))=1