Home
Class 12
MATHS
What are the last two digits of 7^(7^(7^...

What are the last two digits of `7^(7^(7^(7)))` ?

Text Solution

AI Generated Solution

The correct Answer is:
To find the last two digits of \( 7^{7^{7^{7}}} \), we need to compute \( 7^{7^{7^{7}}} \mod 100 \). ### Step 1: Use the Chinese Remainder Theorem We will find \( 7^{7^{7^{7}}} \mod 4 \) and \( 7^{7^{7^{7}}} \mod 25 \), and then combine the results using the Chinese Remainder Theorem. ### Step 2: Calculate \( 7^{7^{7^{7}}} \mod 4 \) Since \( 7 \equiv -1 \mod 4 \): \[ 7^{7^{7^{7}}} \equiv (-1)^{7^{7^{7}}} \mod 4 \] Now, \( 7^{7^{7}} \) is odd, therefore: \[ (-1)^{\text{odd}} \equiv 3 \mod 4 \] Thus, \[ 7^{7^{7^{7}}} \mod 4 \equiv 3 \] ### Step 3: Calculate \( 7^{7^{7^{7}}} \mod 25 \) Next, we need to find \( 7^{7^{7^{7}}} \mod 25 \). We will use Euler's theorem here. First, we compute \( \phi(25) \): \[ \phi(25) = 25 \left(1 - \frac{1}{5}\right) = 20 \] So, we need \( 7^{7^{7}} \mod 20 \). ### Step 4: Calculate \( 7^{7^{7}} \mod 20 \) Now, we find \( 7^{7} \mod 20 \): \[ \phi(20) = 20 \left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{5}\right) = 8 \] We need \( 7^{7} \mod 8 \): \[ 7 \equiv -1 \mod 8 \implies 7^{7} \equiv (-1)^{7} \equiv 7 \mod 8 \] Now we find \( 7^{7} \mod 20 \): \[ 7^{7} \mod 20 \] Calculating \( 7^1, 7^2, 7^3, \ldots \): - \( 7^1 \equiv 7 \) - \( 7^2 = 49 \equiv 9 \) - \( 7^3 = 7 \times 9 = 63 \equiv 3 \) - \( 7^4 = 7 \times 3 = 21 \equiv 1 \) Thus, \( 7^{7} \mod 20 \) can be computed as: \[ 7^{7} \equiv 7^{(7 \mod 4)} \equiv 7^3 \equiv 3 \mod 20 \] ### Step 5: Calculate \( 7^{3} \mod 25 \) Now we compute \( 7^{3} \mod 25 \): \[ 7^1 \equiv 7 \] \[ 7^2 = 49 \equiv 24 \mod 25 \] \[ 7^3 = 7 \times 24 = 168 \equiv 18 \mod 25 \] ### Step 6: Combine results using CRT We have: \[ 7^{7^{7^{7}}} \equiv 3 \mod 4 \] \[ 7^{7^{7^{7}}} \equiv 18 \mod 25 \] Let \( x \) be the solution. We can write: \[ x \equiv 18 \mod 25 \] \[ x \equiv 3 \mod 4 \] ### Step 7: Solve the system of congruences We can express \( x \) in terms of \( k \): \[ x = 25k + 18 \] Now substitute into the second congruence: \[ 25k + 18 \equiv 3 \mod 4 \] Since \( 25 \equiv 1 \mod 4 \): \[ k + 2 \equiv 3 \mod 4 \implies k \equiv 1 \mod 4 \] Thus, \( k = 4m + 1 \) for some integer \( m \): \[ x = 25(4m + 1) + 18 = 100m + 43 \] Therefore, \[ x \equiv 43 \mod 100 \] ### Final Answer The last two digits of \( 7^{7^{7^{7}}} \) are \( \boxed{43} \).
Promotional Banner

Topper's Solved these Questions

  • NUMBER THEORY

    RESONANCE|Exercise Exercise -1 (PART - I)|30 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -1 (PART - II)|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise SSP|55 Videos

Similar Questions

Explore conceptually related problems

What will be the last digit of 7^(23^(12))?

What will be the last digit of 7^(23^(12))?

The last digit of 7^(2003) is

What is the unit digit of 7^(139) ?

The last two digits of the number 7^(20), is:

What is the last digit in 7^(402)+3^(402) ?

Find the unit digit of 3^(47) + 7^(52) .

If S=1!+4!+7!+10!+ . . .+400!, then Q. The last two digits in (1!+4!+7!)! is

Sum of the last 3 digits of the number 7^(100)-3^(100) is