Home
Class 12
MATHS
Expand the binomial ((2)/(x) +x)^(10) up...

Expand the binomial `((2)/(x) +x)^(10)` up to four terms

Text Solution

AI Generated Solution

The correct Answer is:
To expand the binomial expression \(\left(\frac{2}{x} + x\right)^{10}\) up to four terms, we will use the Binomial Theorem. The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] In our case, we can identify: - \(x = \frac{2}{x}\) - \(y = x\) - \(n = 10\) Now, we will calculate the first four terms of the expansion. ### Step 1: Calculate the first term For \(k = 0\): \[ \text{Term}_0 = \binom{10}{0} \left(\frac{2}{x}\right)^{10} (x)^0 = 1 \cdot \left(\frac{2}{x}\right)^{10} \cdot 1 = \frac{2^{10}}{x^{10}} = \frac{1024}{x^{10}} \] ### Step 2: Calculate the second term For \(k = 1\): \[ \text{Term}_1 = \binom{10}{1} \left(\frac{2}{x}\right)^{9} (x)^1 = 10 \cdot \left(\frac{2}{x}\right)^{9} \cdot x = 10 \cdot \frac{2^9}{x^9} \cdot x = 10 \cdot \frac{512}{x^9} \cdot x = \frac{5120}{x^8} \] ### Step 3: Calculate the third term For \(k = 2\): \[ \text{Term}_2 = \binom{10}{2} \left(\frac{2}{x}\right)^{8} (x)^2 = 45 \cdot \left(\frac{2}{x}\right)^{8} \cdot x^2 = 45 \cdot \frac{2^8}{x^8} \cdot x^2 = 45 \cdot \frac{256}{x^8} \cdot x^2 = \frac{11520}{x^6} \] ### Step 4: Calculate the fourth term For \(k = 3\): \[ \text{Term}_3 = \binom{10}{3} \left(\frac{2}{x}\right)^{7} (x)^3 = 120 \cdot \left(\frac{2}{x}\right)^{7} \cdot x^3 = 120 \cdot \frac{2^7}{x^7} \cdot x^3 = 120 \cdot \frac{128}{x^7} \cdot x^3 = \frac{15360}{x^4} \] ### Final Expansion Now, we can combine all four terms we calculated: \[ \left(\frac{2}{x} + x\right)^{10} \approx \frac{1024}{x^{10}} + \frac{5120}{x^8} + \frac{11520}{x^6} + \frac{15360}{x^4} \] ### Summary of the Expansion Thus, the expansion of \(\left(\frac{2}{x} + x\right)^{10}\) up to four terms is: \[ \frac{1024}{x^{10}} + \frac{5120}{x^8} + \frac{11520}{x^6} + \frac{15360}{x^4} \]
Promotional Banner

Topper's Solved these Questions

  • COMBINATORICS

    RESONANCE|Exercise Self practice problems|33 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-1 (Part-I: Pre RMO)|15 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE|Exercise High Level Problems (HLP)|33 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos

Similar Questions

Explore conceptually related problems

If the middle term in the binomial expansion of ((1)/(x)+x sin x^(10)) is equal to (63)/(8), find the value of x.

Expand the following function in positive integral powers of the variable x up to the terms of the inficated order , inclusive f(x) =e^(2x-x^(2)) up to the terms containing x^(5)

If the middle term in the binomial expansion of ((1)/(x) + x sin x )^(10) is ( 63)/( 8) , then the value of 6sin^(2) x +sin x -2 is

(p + 2)th term from the end in the binomial expansion of (x^(2)-2/(x^(2)))^(2n+1) is

Expand the polynomial P(x) =x^(5) -2x^(4)+x^(3)-x^(2)+2x-1 in powers of the binomial x - 1 using Taylor formula .

Find the coefficient of x^(10) in the binomial expansion of (2x^(2)-(3)/(x))^(11), when x!=0

Coefficient of the middle term in the expansion of the binomial (1+x)^(40) is equal to

Can the binomial expansion be used to expand each of these expressions? a.(3x-1)^(-2) b.sqrt(2x-1)