Home
Class 12
MATHS
Find the middle term (s) in the expansio...

Find the middle term (s) in the expansion of
(I) `(1+2x)^(12)`
(II) `(2y-(y^(2))/(2))^(11)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the middle term(s) in the expansions of the given expressions, we will follow a systematic approach for each part. ### Part I: Find the middle term in the expansion of \((1 + 2x)^{12}\) 1. **Identify \(n\)**: In the expression \((1 + 2x)^{12}\), \(n = 12\). 2. **Determine the number of terms**: The number of terms in the expansion is \(n + 1 = 12 + 1 = 13\). 3. **Find the middle term**: Since the number of terms is odd (13), the middle term will be the \(\frac{n}{2} + 1\)th term, which is the \(7\)th term. 4. **Use the binomial formula**: The general term \(T_{r+1}\) in the expansion of \((a + b)^n\) is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] Here, \(a = 1\), \(b = 2x\), and \(n = 12\). For the \(7\)th term, \(r = 6\): \[ T_7 = \binom{12}{6} (1)^{12-6} (2x)^6 \] 5. **Calculate \(T_7\)**: \[ T_7 = \binom{12}{6} (2x)^6 = \binom{12}{6} \cdot 2^6 \cdot x^6 \] 6. **Find \(\binom{12}{6}\)**: \[ \binom{12}{6} = \frac{12!}{6!6!} = 924 \] Therefore, \[ T_7 = 924 \cdot 64 \cdot x^6 = 59136x^6 \] ### Part II: Find the middle term in the expansion of \((2y - \frac{y^2}{2})^{11}\) 1. **Identify \(n\)**: In the expression \((2y - \frac{y^2}{2})^{11}\), \(n = 11\). 2. **Determine the number of terms**: The number of terms in the expansion is \(n + 1 = 11 + 1 = 12\). 3. **Find the middle terms**: Since the number of terms is even (12), there will be two middle terms: the \(6\)th and \(7\)th terms. 4. **Calculate the \(6\)th term**: \[ T_6 = \binom{11}{5} (2y)^{11-5} \left(-\frac{y^2}{2}\right)^5 \] \[ = \binom{11}{5} (2y)^6 \left(-\frac{y^2}{2}\right)^5 \] 5. **Calculate \(T_6\)**: \[ = \binom{11}{5} \cdot 2^6 \cdot y^6 \cdot \left(-\frac{1}{2}\right)^5 \cdot y^{10} \] \[ = \binom{11}{5} \cdot 64 \cdot y^{16} \cdot \left(-\frac{1}{32}\right) \] \[ = \binom{11}{5} \cdot (-2) \cdot y^{16} \] 6. **Find \(\binom{11}{5}\)**: \[ \binom{11}{5} = 462 \] Therefore, \[ T_6 = 462 \cdot (-2) \cdot y^{16} = -924y^{16} \] 7. **Calculate the \(7\)th term**: \[ T_7 = \binom{11}{6} (2y)^{11-6} \left(-\frac{y^2}{2}\right)^6 \] \[ = \binom{11}{6} (2y)^5 \left(-\frac{y^2}{2}\right)^6 \] 8. **Calculate \(T_7\)**: \[ = \binom{11}{6} \cdot 32 \cdot y^5 \cdot \left(-\frac{1}{64}\right) \cdot y^{12} \] \[ = \binom{11}{6} \cdot (-\frac{1}{2}) \cdot y^{17} \] 9. **Find \(\binom{11}{6}\)**: \[ \binom{11}{6} = 462 \] Therefore, \[ T_7 = 462 \cdot (-\frac{1}{2}) \cdot y^{17} = -231y^{17} \] ### Final Results: - The middle term in the expansion of \((1 + 2x)^{12}\) is **\(59136x^6\)**. - The middle terms in the expansion of \((2y - \frac{y^2}{2})^{11}\) are **\(-924y^{16}\)** and **\(-231y^{17}\)**.
Promotional Banner

Topper's Solved these Questions

  • COMBINATORICS

    RESONANCE|Exercise Self practice problems|33 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-1 (Part-I: Pre RMO)|15 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE|Exercise High Level Problems (HLP)|33 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos

Similar Questions

Explore conceptually related problems

Find the middle term in the expansion of (x- 1/(2x))^12

Find the middle term in the expansion of (1+x)^(2n)

Find the middle term in the expansion of (3x-(1)/(2x))^(16)

Find the middle term in the expansion of (3x-(1)/(2x))^(16)

Find the middle term in the expansion of (x/y-y/x)^7

Find the middle term in the expansion of : ((a)/(x)+bx)^(12)

Find the middle terms in the expansions of (x/3+9y)^10

Find the middle term in the expansion of: (x^(2)-(2)/(x))^(10)