Home
Class 12
MATHS
Prove that coefficient of x^(r ) in (1-x...

Prove that coefficient of `x^(r )` in `(1-x)^(-n) " is " ""^(n+r-1)C_(r )`

Promotional Banner

Topper's Solved these Questions

  • COMBINATORICS

    RESONANCE|Exercise Self practice problems|33 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-1 (Part-I: Pre RMO)|15 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE|Exercise High Level Problems (HLP)|33 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos

Similar Questions

Explore conceptually related problems

Prove that the coefficient of x^(r) in the expansion of (1-2x)^(-(1)/(2)) is (2r!)/((2^(r))(r!)^(2))

If a_(r) is the coefficient of x^(r) in (1-2x+3x^(2))^(n), then sum_(r=0)^(2n)r*a_(r)=

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

If n is an even natural number and coefficient of x^(r) in the expansion of ((1+x)^(n))/(1-x) is 2^(n) then (A) r>((n)/(2))(B)r>=((n-2)/(2))(C)r =n

how that the coefficient of (r+1) th in the expansion of (1+x)^(n+1) is equal to the sum of the coefficients of the r th and (r+1) th term in the expansion of (1+x)^(n)

(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n) , show that sum_(r=0)^(n) C_(r)^(3) is equal to the coefficient of x^(n) y^(n) in the expansion of {(1+ x)(1 + y) (x + y)}^(n) .