Home
Class 12
MATHS
Expand the binomial ((x^(2))/(3) + (3)/(...

Expand the binomial `((x^(2))/(3) + (3)/(x))^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the binomial expression \(\left(\frac{x^2}{3} + \frac{3}{x}\right)^5\), we will use the Binomial Theorem, which states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, let: - \(a = \frac{x^2}{3}\) - \(b = \frac{3}{x}\) - \(n = 5\) Now, we can expand the expression step by step. ### Step 1: Identify the terms We have: \[ \left(\frac{x^2}{3} + \frac{3}{x}\right)^5 \] ### Step 2: Apply the Binomial Theorem Using the Binomial Theorem, we can write: \[ \left(\frac{x^2}{3} + \frac{3}{x}\right)^5 = \sum_{k=0}^{5} \binom{5}{k} \left(\frac{x^2}{3}\right)^{5-k} \left(\frac{3}{x}\right)^k \] ### Step 3: Calculate each term in the summation We will calculate each term for \(k = 0\) to \(k = 5\): 1. **For \(k = 0\)**: \[ \binom{5}{0} \left(\frac{x^2}{3}\right)^5 \left(\frac{3}{x}\right)^0 = 1 \cdot \frac{x^{10}}{243} = \frac{x^{10}}{243} \] 2. **For \(k = 1\)**: \[ \binom{5}{1} \left(\frac{x^2}{3}\right)^4 \left(\frac{3}{x}\right)^1 = 5 \cdot \frac{x^8}{81} \cdot \frac{3}{x} = \frac{15x^8}{81} = \frac{5x^8}{27} \] 3. **For \(k = 2\)**: \[ \binom{5}{2} \left(\frac{x^2}{3}\right)^3 \left(\frac{3}{x}\right)^2 = 10 \cdot \frac{x^6}{27} \cdot \frac{9}{x^2} = \frac{90x^6}{27} = \frac{10x^6}{3} \] 4. **For \(k = 3\)**: \[ \binom{5}{3} \left(\frac{x^2}{3}\right)^2 \left(\frac{3}{x}\right)^3 = 10 \cdot \frac{x^4}{9} \cdot \frac{27}{x^3} = \frac{270x^4}{9} = 30x^4 \] 5. **For \(k = 4\)**: \[ \binom{5}{4} \left(\frac{x^2}{3}\right)^1 \left(\frac{3}{x}\right)^4 = 5 \cdot \frac{x^2}{3} \cdot \frac{81}{x^4} = \frac{405}{3x^2} = \frac{135}{x^2} \] 6. **For \(k = 5\)**: \[ \binom{5}{5} \left(\frac{x^2}{3}\right)^0 \left(\frac{3}{x}\right)^5 = 1 \cdot 1 \cdot \frac{243}{x^5} = \frac{243}{x^5} \] ### Step 4: Combine all terms Now, we combine all the terms we calculated: \[ \frac{x^{10}}{243} + \frac{5x^8}{27} + \frac{10x^6}{3} + 30x^4 + \frac{135}{x^2} + \frac{243}{x^5} \] ### Final Answer Thus, the expansion of \(\left(\frac{x^2}{3} + \frac{3}{x}\right)^5\) is: \[ \frac{x^{10}}{243} + \frac{5x^8}{27} + \frac{10x^6}{3} + 30x^4 + \frac{135}{x^2} + \frac{243}{x^5} \]
Promotional Banner

Topper's Solved these Questions

  • COMBINATORICS

    RESONANCE|Exercise Exercise-1 (Part-I: Pre RMO)|15 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-1 (Part-II RMO)|17 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE|Exercise High Level Problems (HLP)|33 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos

Similar Questions

Explore conceptually related problems

Expand of the expression: ((x)/(3)+(1)/(x))^(5)

Find the product of the binomials: ((4)/(3)x^(2)+3)((4)/(3)x^(2)+3)

Expand the polynomial P(x) =x^(5) -2x^(4)+x^(3)-x^(2)+2x-1 in powers of the binomial x - 1 using Taylor formula .

Expand using Binomial Theorem (1+(x)/(2)-(2)/(x))^(4),x!=0

Expand ((x)/(3)-(y)/(2))^(2)

Expand each of the following ((x)/(2)-(y)/(3))^(2) (iii) (x+5)(x-3)

Expand (x^(2)+(3)/(x))^(4),x!=0

Using binomial theorem, expand each of the following: ((2x)/3-3/(2x))^(6)

RESONANCE-COMBINATORICS-Self practice problems
  1. Write the first three terms in the expansion of (2-(y)/(3))^(6)

    Text Solution

    |

  2. Expand the binomial ((x^(2))/(3) + (3)/(x))^(5)

    Text Solution

    |

  3. Find term which is independent of x in (x^(2)-(1)/(x^(6)))^(16)

    Text Solution

    |

  4. If n is a positive integer, then show that 6^(n)-5n-1 is divisible by ...

    Text Solution

    |

  5. What is the remainder when 3^(257) is divided by 80

    Text Solution

    |

  6. Find the last digit, last two digits and last three digits of the numb...

    Text Solution

    |

  7. Which number is larger (1.3)^(2000) or 600

    Text Solution

    |

  8. Find the possible set of values of x for which expansion of (3-2x)^(1/...

    Text Solution

    |

  9. Find the coefficient of x^(50) in (2-3x)/((1-x)^(3))

    Text Solution

    |

  10. How many 4 digit numbers are there, without repetition of digits, If e...

    Text Solution

    |

  11. Using 6 different flags, how many different signals can be made by usi...

    Text Solution

    |

  12. Find the sum of all four digit numbers (without repetition of digits) ...

    Text Solution

    |

  13. Six horses take part in a race. In how many ways can these horses come...

    Text Solution

    |

  14. Find the sum of all three digit numbers those can be formed by using t...

    Text Solution

    |

  15. In how many ways 7 persons can be selected from among 5 Indian, 4 Brit...

    Text Solution

    |

  16. In how many ways 6 boys & 6 girls can sit at a round table so that gir...

    Text Solution

    |

  17. In how many ways 4 persons can occupy 10 chairs in a row, if no two si...

    Text Solution

    |

  18. In how many ways we can select 3 letters of the word PROPORTION?

    Text Solution

    |

  19. How many words can be formed using the letters of the word ASSESSMENT ...

    Text Solution

    |

  20. If all the letters of the word ARRANGE are arranged in all possible wa...

    Text Solution

    |