Home
Class 11
MATHS
If x ^(y) = e ^( x -y) , then show that...

If `x ^(y) = e ^( x -y) ,` then show that ` (dy)/(dx) = (log x )/( (1 + log x ) ^(2))`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    AAKASH SERIES|Exercise EXERCISE -4.7|25 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise EXERCISE -4.6 (SHORT TYPE ANSWER QUESTIONS )|37 Videos
  • CONTINUITY

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|34 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED)) (Integer Type Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If x=tan(e^(-y)) , then show that (dy)/(dx)=(-e^y)/(1+x^2) .

If x ^(y) + y ^(x) = a ^(b) then show that (dy)/(dx) =- ((y x ^(y-1) + y^(x) log y)/( x ^(y) log x + x y ^(x -1)))

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))

If y = log _(cos x ) sin x, then , (dy)/(dx ) =

A: If y = x ^(y) then (dy)/(dx) = (y ^(2))/(x(1- log y )) If y = f (x) ^(y), then (dy)/(dx) = (y ^(2) f '(x))/(f (x) [1- ylog f (x)])= (y ^(2) f'(x))/(f (x) [1- log y])

The solution of (dy)/(dx) = (x log x^(2) + x)/(sin y + y cos y) is

Find the derivatives of the function If x = log (1 + sqrty), then show that (dy)/(dx) = 2 sqrtye ^(x)

If x^2+y^2=27xy , then show that log((x-y)/(5))=1/2[logx+logy] .