Home
Class 11
MATHS
If the chord of contact of tangents from...

If the chord of contact of tangents from a point `P` to the parabola `y^2=4a x` touches the parabola `x^2=4b y ,` then find the locus of `Pdot`

A

A circle

B

A parbola

C

A pair of straight lines

D

A hyperbola

Text Solution

Verified by Experts

The correct Answer is:
D


`QR:y beta = 2a(x+alpha)`
`y=(2a)/(beta) (x+alpha)`
Parabola : `x^(2)=4by`
`rArr y=(2a)/(beta) (x+alpha)`
Parabola: `x^(2)=4by`
`rArr x^(2)=4b.(2a)/(beta) rArr beta x^(2) = 8ab (x+alpha) rArr Bx^(2)-8ax -8ab alpha = 0 " " :. " " D=0`
`rArr 64 a^(2)b^(2) +32 ab alpha beta = 0 rArr alpha beta = (64^(2)b^(2))/(32ab) = -2ab rArr "Locus of " (alpha, beta) ` is a hyperbola
Promotional Banner

Similar Questions

Explore conceptually related problems

If the chord of contact of tangents from a point P to the parabola y^(2)=4ax touches the parabola x^(2)=4by, then find the locus of P.

The line through P , perpendicular to the chord of the tangents drawn from the point P to the parabola y^(2)=16x touches the parabola x^(2)=12y , then the locus of P is 2ax+3y+4a^(2)=0 then a is ________

Length of the chord of contact drawn from the point (-3,2) to the parabola y^(2)=4x is

If the chord of contact of tangents from a point P(h, k) to the circle x^(2)+y^(2)=a^(2) touches the circle x^(2)+(y-a)^(2)=a^(2) , then locus of P is

Find the points of contact Q and R of a tangent from the point P(2,3) on the parabola y^(2)=4x

Tangents are drawn from points of the parabola y^(2)=4ax to the parabola y^(2)=4b(x-c) . Find the locus of the mid point of chord of contact.

Find the locus of mid-point of chord of parabola y^(2)=4ax which touches the parabola x^(2)=4by

A point P moves such that the chord of contact of the pair of tangents from P on the parabola y^(2)=4ax touches the rectangular hyperbola x^(2)-y^(2)=c^(2). Show that the locus of P is the ellipse (x^(2))/(c^(2))+(y^(2))/((2a)^(2))=1

If the tangent at the point P(2,4) to the parabola y^(2)=8x meets the parabola y^(2)=8x+5 at Q and R, then find the midpoint of chord QR.