Home
Class 6
MATHS
Simplify the following : (i) 7""3/4-3"...

Simplify the following :
(i) `7""3/4-3""5/6+7/8" (ii) " 2""3/5+1""7/10-3""2/15`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify the given expressions step by step. ### Part (i): Simplify `7 3/4 - 3 5/6 + 7/8` **Step 1: Convert mixed numbers to improper fractions.** - For `7 3/4`: \[ 7 \times 4 + 3 = 28 + 3 = 31 \quad \Rightarrow \quad \frac{31}{4} \] - For `3 5/6`: \[ 3 \times 6 + 5 = 18 + 5 = 23 \quad \Rightarrow \quad \frac{23}{6} \] Now we have: \[ \frac{31}{4} - \frac{23}{6} + \frac{7}{8} \] **Step 2: Find the LCM of the denominators (4, 6, and 8).** - The LCM of 4, 6, and 8 is 24. **Step 3: Convert each fraction to have the common denominator of 24.** - For `31/4`: \[ \frac{31}{4} = \frac{31 \times 6}{4 \times 6} = \frac{186}{24} \] - For `23/6`: \[ \frac{23}{6} = \frac{23 \times 4}{6 \times 4} = \frac{92}{24} \] - For `7/8`: \[ \frac{7}{8} = \frac{7 \times 3}{8 \times 3} = \frac{21}{24} \] Now we have: \[ \frac{186}{24} - \frac{92}{24} + \frac{21}{24} \] **Step 4: Combine the fractions.** \[ \frac{186 - 92 + 21}{24} = \frac{115}{24} \] **Step 5: Convert the improper fraction back to a mixed number.** \[ 115 \div 24 = 4 \quad \text{(remainder 23)} \quad \Rightarrow \quad 4 \frac{23}{24} \] ### Final Answer for Part (i): \[ 4 \frac{23}{24} \] --- ### Part (ii): Simplify `2 3/5 + 1 7/10 - 3 2/15` **Step 1: Convert mixed numbers to improper fractions.** - For `2 3/5`: \[ 2 \times 5 + 3 = 10 + 3 = 13 \quad \Rightarrow \quad \frac{13}{5} \] - For `1 7/10`: \[ 1 \times 10 + 7 = 10 + 7 = 17 \quad \Rightarrow \quad \frac{17}{10} \] - For `3 2/15`: \[ 3 \times 15 + 2 = 45 + 2 = 47 \quad \Rightarrow \quad \frac{47}{15} \] Now we have: \[ \frac{13}{5} + \frac{17}{10} - \frac{47}{15} \] **Step 2: Find the LCM of the denominators (5, 10, and 15).** - The LCM of 5, 10, and 15 is 30. **Step 3: Convert each fraction to have the common denominator of 30.** - For `13/5`: \[ \frac{13}{5} = \frac{13 \times 6}{5 \times 6} = \frac{78}{30} \] - For `17/10`: \[ \frac{17}{10} = \frac{17 \times 3}{10 \times 3} = \frac{51}{30} \] - For `47/15`: \[ \frac{47}{15} = \frac{47 \times 2}{15 \times 2} = \frac{94}{30} \] Now we have: \[ \frac{78}{30} + \frac{51}{30} - \frac{94}{30} \] **Step 4: Combine the fractions.** \[ \frac{78 + 51 - 94}{30} = \frac{35}{30} \] **Step 5: Simplify the fraction.** \[ \frac{35}{30} = \frac{7}{6} \quad \Rightarrow \quad 1 \frac{1}{6} \] ### Final Answer for Part (ii): \[ 1 \frac{1}{6} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following : 3/7" of " 5""5/6

Simplify the following : (i) 9/14+3/14-5/14" (ii) "2""5/7-3""3/7+5""4/7 .

Simplify the following : (i) 3/4+2/5 " (ii) "3/7-5/28" (iii) "2""1/3+3""5/6 .

Simplify the following : (i) (1/2+4/5) times 4/7" (ii) " 3""3/7 div 5""1/7+2""1/4 .

Simplify the following : (1/4" of "2""2/7) div 3/5

Simplify the following : 5a - 7a + 3a + 8a - 11 a

Simplify the following : 2/5" of " 3""4/7-1""1/2 times 7/11 .

Simplify the following 4x-[3x-(1-5x)-6[8-3(2x+7)]]

Evaluate the following : (i) 4/5 div 3" (ii) "7/8 div 5/6" (iii) " 5""1/3 div 4/15 .

Simplify the following : (i) (-7)+(-6)div2-{(-5)xx(-4)-(3-5)} (ii) 121div{17-{15-3(8-5)}] .