Home
Class 6
MATHS
Simplify the following expressions : (...

Simplify the following expressions :
(i) `(2/3+3/4) div (7/5-5/6) " (ii) "(2""1/3-1""1/2)" of " 3/5+1""2/5 div 2""1/3`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify the given expressions step by step. ### Expression (i): \[ \frac{2}{3} + \frac{3}{4} \div \left(\frac{7}{5} - \frac{5}{6}\right) \] **Step 1: Solve the subtraction in the denominator.** - Find the LCM of 5 and 6, which is 30. - Convert \(\frac{7}{5}\) and \(\frac{5}{6}\) to have a common denominator: \[ \frac{7}{5} = \frac{7 \times 6}{5 \times 6} = \frac{42}{30} \] \[ \frac{5}{6} = \frac{5 \times 5}{6 \times 5} = \frac{25}{30} \] - Now subtract: \[ \frac{42}{30} - \frac{25}{30} = \frac{42 - 25}{30} = \frac{17}{30} \] **Step 2: Rewrite the expression.** \[ \frac{2}{3} + \frac{3}{4} \div \frac{17}{30} \] **Step 3: Convert division to multiplication by the reciprocal.** \[ \frac{2}{3} + \frac{3}{4} \times \frac{30}{17} \] **Step 4: Solve the multiplication.** - Calculate \(\frac{3}{4} \times \frac{30}{17}\): \[ = \frac{3 \times 30}{4 \times 17} = \frac{90}{68} \] - Simplify \(\frac{90}{68}\) by dividing both numerator and denominator by 2: \[ = \frac{45}{34} \] **Step 5: Now add \(\frac{2}{3}\) and \(\frac{45}{34}\).** - Find the LCM of 3 and 34, which is 102. - Convert both fractions: \[ \frac{2}{3} = \frac{2 \times 34}{3 \times 34} = \frac{68}{102} \] \[ \frac{45}{34} = \frac{45 \times 3}{34 \times 3} = \frac{135}{102} \] - Now add: \[ \frac{68}{102} + \frac{135}{102} = \frac{203}{102} \] **Final Result for Expression (i):** \[ \frac{203}{102} \text{ or } 2 \frac{1}{102} \] ### Expression (ii): \[ (2 \frac{1}{3} - 1 \frac{1}{2}) \text{ of } \left( \frac{3}{5} + 1 \frac{2}{5} \div 2 \frac{1}{3} \right) \] **Step 1: Convert mixed numbers to improper fractions.** - \(2 \frac{1}{3} = \frac{7}{3}\) - \(1 \frac{1}{2} = \frac{3}{2}\) - \(1 \frac{2}{5} = \frac{7}{5}\) - \(2 \frac{1}{3} = \frac{7}{3}\) **Step 2: Rewrite the expression.** \[ \left(\frac{7}{3} - \frac{3}{2}\right) \text{ of } \left(\frac{3}{5} + \frac{7}{5} \div \frac{7}{3}\right) \] **Step 3: Solve the division in the second part.** \[ \frac{7}{5} \div \frac{7}{3} = \frac{7}{5} \times \frac{3}{7} = \frac{3}{5} \] **Step 4: Now add \(\frac{3}{5} + \frac{3}{5}\).** \[ \frac{3}{5} + \frac{3}{5} = \frac{6}{5} \] **Step 5: Now solve the subtraction in the first part.** - Find LCM of 3 and 2, which is 6: \[ \frac{7}{3} = \frac{14}{6}, \quad \frac{3}{2} = \frac{9}{6} \] - Now subtract: \[ \frac{14}{6} - \frac{9}{6} = \frac{5}{6} \] **Step 6: Now multiply \(\frac{5}{6}\) by \(\frac{6}{5}\).** \[ \frac{5}{6} \times \frac{6}{5} = 1 \] **Final Result for Expression (ii):** \[ 1 \] ### Summary of Results: 1. Expression (i): \(\frac{203}{102} \text{ or } 2 \frac{1}{102}\) 2. Expression (ii): \(1\)
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following (1 to 3) : 1/2 div (1/3+1/4)

Simplify the following : (3/7+1/2) div 7/8

Simplify the following : (2""4/5-1""3/5) div (3""3/5-2""1/5) .

Simplify the following (1 to 3) : 5/8 div 3/4+2/5

Simplify the following: 2/3 xx 5/7div4/9

Simplify the following : (1/4" of "2""2/7) div 3/5

Simplify the following : (1/10+3/5) div 3""1/2

Simplify the following : (1""1/4+2""3/4) div (2""2/3+3""1/3)

Simplify the following : (i) 3/4+2/5 " (ii) "3/7-5/28" (iii) "2""1/3+3""5/6 .

Simplify the following 2/3 x^(3) yz^(2) div 5/2 xy^(3)z