Home
Class 6
MATHS
Simplify the following : 2""3/14-3""5/...

Simplify the following :
`2""3/14-3""5/6-2/5+2""1/2`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 2 \frac{3}{14} - 3 \frac{5}{6} - \frac{2}{5} + 2 \frac{1}{2} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert \( 2 \frac{3}{14} \) to an improper fraction: \[ 2 \frac{3}{14} = \frac{2 \times 14 + 3}{14} = \frac{28 + 3}{14} = \frac{31}{14} \] 2. Convert \( 3 \frac{5}{6} \) to an improper fraction: \[ 3 \frac{5}{6} = \frac{3 \times 6 + 5}{6} = \frac{18 + 5}{6} = \frac{23}{6} \] 3. Convert \( 2 \frac{1}{2} \) to an improper fraction: \[ 2 \frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{4 + 1}{2} = \frac{5}{2} \] Now, the expression becomes: \[ \frac{31}{14} - \frac{23}{6} - \frac{2}{5} + \frac{5}{2} \] ### Step 2: Find the Least Common Multiple (LCM) of the Denominators The denominators are 14, 6, 5, and 2. We will find the LCM of these numbers. - The prime factorization: - \( 14 = 2 \times 7 \) - \( 6 = 2 \times 3 \) - \( 5 = 5 \) - \( 2 = 2 \) The LCM is found by taking the highest power of each prime: - \( 2^1 \) - \( 3^1 \) - \( 5^1 \) - \( 7^1 \) Thus, the LCM is: \[ LCM = 2^1 \times 3^1 \times 5^1 \times 7^1 = 2 \times 3 \times 5 \times 7 = 210 \] ### Step 3: Convert Each Fraction to Have the Same Denominator Now we will convert each fraction to have a denominator of 210. 1. For \( \frac{31}{14} \): \[ \frac{31}{14} = \frac{31 \times 15}{14 \times 15} = \frac{465}{210} \] 2. For \( \frac{23}{6} \): \[ \frac{23}{6} = \frac{23 \times 35}{6 \times 35} = \frac{805}{210} \] 3. For \( \frac{2}{5} \): \[ \frac{2}{5} = \frac{2 \times 42}{5 \times 42} = \frac{84}{210} \] 4. For \( \frac{5}{2} \): \[ \frac{5}{2} = \frac{5 \times 105}{2 \times 105} = \frac{525}{210} \] ### Step 4: Rewrite the Expression Now we can rewrite the expression: \[ \frac{465}{210} - \frac{805}{210} - \frac{84}{210} + \frac{525}{210} \] ### Step 5: Combine the Fractions Combine the fractions over the common denominator: \[ \frac{465 - 805 - 84 + 525}{210} \] Calculating the numerator: \[ 465 - 805 = -340 \] \[ -340 - 84 = -424 \] \[ -424 + 525 = 101 \] So we have: \[ \frac{101}{210} \] ### Final Answer The simplified form of the expression is: \[ \frac{101}{210} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following : 1""13/14-2""5/6+1""6/7

Simplify the following : 1""3/25+7/20-2/5

Simplify the following : (i) 7""3/4-3""5/6+7/8" (ii) " 2""3/5+1""7/10-3""2/15

Simplify the following : (2""4/5-1""3/5) div (3""3/5-2""1/5) .

Simplify the following : (4/5+2)(3-2/3) .

Simplify the following : 3""2/11 times 5""9/14

Simplify the following : (1/10+3/5) div 3""1/2

Simplify the following : (i) 9/14+3/14-5/14" (ii) "2""5/7-3""3/7+5""4/7 .

Simplify the following : (i) 3/4+2/5 " (ii) "3/7-5/28" (iii) "2""1/3+3""5/6 .

Simplify the following (1 to 3) : 1""5/13" of "2""3/7 div 68/91-(1""1/2-1""1/3)