Home
Class 6
MATHS
Simplify the following : (i) 1/2+25/27...

Simplify the following :
(i) `1/2+25/27" (ii) "15""13/20-12""3/4" (iii) "2""3/14-1""4/35`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify the given expressions step by step. ### (i) Simplify \( \frac{1}{2} + \frac{25}{27} \) **Step 1: Find the LCM of the denominators.** - The denominators are 2 and 27. The LCM of 2 and 27 is 54. **Step 2: Convert each fraction to have the same denominator.** - For \( \frac{1}{2} \): \[ \frac{1}{2} = \frac{1 \times 27}{2 \times 27} = \frac{27}{54} \] - For \( \frac{25}{27} \): \[ \frac{25}{27} = \frac{25 \times 2}{27 \times 2} = \frac{50}{54} \] **Step 3: Add the fractions.** \[ \frac{27}{54} + \frac{50}{54} = \frac{27 + 50}{54} = \frac{77}{54} \] **Step 4: Convert to a mixed fraction if necessary.** - \( \frac{77}{54} \) can be expressed as: \[ 1 \frac{23}{54} \] ### Final Answer for (i): \[ \frac{1}{2} + \frac{25}{27} = \frac{77}{54} \text{ or } 1 \frac{23}{54} \] --- ### (ii) Simplify \( 15 \frac{13}{20} - 12 \frac{3}{4} \) **Step 1: Convert mixed fractions to improper fractions.** - For \( 15 \frac{13}{20} \): \[ 15 \frac{13}{20} = \frac{15 \times 20 + 13}{20} = \frac{300 + 13}{20} = \frac{313}{20} \] - For \( 12 \frac{3}{4} \): \[ 12 \frac{3}{4} = \frac{12 \times 4 + 3}{4} = \frac{48 + 3}{4} = \frac{51}{4} \] **Step 2: Find the LCM of the denominators.** - The denominators are 20 and 4. The LCM is 20. **Step 3: Convert \( \frac{51}{4} \) to have the same denominator.** \[ \frac{51}{4} = \frac{51 \times 5}{4 \times 5} = \frac{255}{20} \] **Step 4: Subtract the fractions.** \[ \frac{313}{20} - \frac{255}{20} = \frac{313 - 255}{20} = \frac{58}{20} \] **Step 5: Simplify the fraction.** \[ \frac{58}{20} = \frac{29}{10} = 2 \frac{9}{10} \] ### Final Answer for (ii): \[ 15 \frac{13}{20} - 12 \frac{3}{4} = \frac{29}{10} \text{ or } 2 \frac{9}{10} \] --- ### (iii) Simplify \( 2 \frac{3}{14} - 1 \frac{4}{35} \) **Step 1: Convert mixed fractions to improper fractions.** - For \( 2 \frac{3}{14} \): \[ 2 \frac{3}{14} = \frac{2 \times 14 + 3}{14} = \frac{28 + 3}{14} = \frac{31}{14} \] - For \( 1 \frac{4}{35} \): \[ 1 \frac{4}{35} = \frac{1 \times 35 + 4}{35} = \frac{35 + 4}{35} = \frac{39}{35} \] **Step 2: Find the LCM of the denominators.** - The denominators are 14 and 35. The LCM is 70. **Step 3: Convert each fraction to have the same denominator.** - For \( \frac{31}{14} \): \[ \frac{31}{14} = \frac{31 \times 5}{14 \times 5} = \frac{155}{70} \] - For \( \frac{39}{35} \): \[ \frac{39}{35} = \frac{39 \times 2}{35 \times 2} = \frac{78}{70} \] **Step 4: Subtract the fractions.** \[ \frac{155}{70} - \frac{78}{70} = \frac{155 - 78}{70} = \frac{77}{70} \] **Step 5: Simplify the fraction.** \[ \frac{77}{70} = \frac{11}{10} = 1 \frac{1}{10} \] ### Final Answer for (iii): \[ 2 \frac{3}{14} - 1 \frac{4}{35} = \frac{11}{10} \text{ or } 1 \frac{1}{10} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following : 1""3/25+7/20-2/5

Simplify the following : 1""2/3+2""1/2+3/4

Simplify the following : (i) 9/14+3/14-5/14" (ii) "2""5/7-3""3/7+5""4/7 .

Simplify the following : (i) 2""5/12-1""19/60+2""11/40" (ii) " 15""3/25+4""4/5-3""3/10-16""3/5 .

Simplify the following : (i) 3/4+2/5 " (ii) "3/7-5/28" (iii) "2""1/3+3""5/6 .

Simplify each of the following: (i) 124-(12-2) * 9 (ii) (13+7) * (9-4) -18 (iii) 210-(14-4) * (18+2) - 10

Express the following fractions as decimals: (i) 12 1/2 (ii) 75 1/4 (iii) 25 1/8

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)

Write each of the following as decimals: (i) 12 1/4 (ii) 7 1/8 (iii) 5 1/(20)

Evaluate each of the following: (i) (-5)/(14)+(-2)/7 (ii) (13)/(15)-(12)/(25) (iii) (-6)/(13)-(-7)/(13)