Home
Class 6
MATHS
Simplify the following : (i) 2""5/12-1...

Simplify the following :
(i) `2""5/12-1""19/60+2""11/40" (ii) " 15""3/25+4""4/5-3""3/10-16""3/5`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify the given expressions step by step. ### Part (i): Simplify \( 2 \frac{5}{12} - 1 \frac{19}{60} + 2 \frac{11}{40} \) 1. **Convert Mixed Numbers to Improper Fractions**: - \( 2 \frac{5}{12} = \frac{2 \times 12 + 5}{12} = \frac{24 + 5}{12} = \frac{29}{12} \) - \( 1 \frac{19}{60} = \frac{1 \times 60 + 19}{60} = \frac{60 + 19}{60} = \frac{79}{60} \) - \( 2 \frac{11}{40} = \frac{2 \times 40 + 11}{40} = \frac{80 + 11}{40} = \frac{91}{40} \) 2. **Find the LCM of the Denominators**: - The denominators are 12, 60, and 40. The LCM of these numbers is 120. 3. **Convert Each Fraction to Have the Same Denominator**: - For \( \frac{29}{12} \): \[ \frac{29}{12} = \frac{29 \times 10}{12 \times 10} = \frac{290}{120} \] - For \( \frac{79}{60} \): \[ \frac{79}{60} = \frac{79 \times 2}{60 \times 2} = \frac{158}{120} \] - For \( \frac{91}{40} \): \[ \frac{91}{40} = \frac{91 \times 3}{40 \times 3} = \frac{273}{120} \] 4. **Combine the Fractions**: - Now substitute back into the expression: \[ \frac{290}{120} - \frac{158}{120} + \frac{273}{120} = \frac{290 - 158 + 273}{120} = \frac{405}{120} \] 5. **Simplify the Result**: - To simplify \( \frac{405}{120} \), find the GCD of 405 and 120, which is 15: \[ \frac{405 \div 15}{120 \div 15} = \frac{27}{8} \] - Convert to mixed number: \[ 27 \div 8 = 3 \text{ remainder } 3 \Rightarrow 3 \frac{3}{8} \] ### Final Answer for Part (i): \[ 3 \frac{3}{8} \] --- ### Part (ii): Simplify \( 15 \frac{3}{25} + 4 \frac{4}{5} - 3 \frac{3}{10} - 16 \frac{3}{5} \) 1. **Convert Mixed Numbers to Improper Fractions**: - \( 15 \frac{3}{25} = \frac{15 \times 25 + 3}{25} = \frac{375 + 3}{25} = \frac{378}{25} \) - \( 4 \frac{4}{5} = \frac{4 \times 5 + 4}{5} = \frac{20 + 4}{5} = \frac{24}{5} \) - \( 3 \frac{3}{10} = \frac{3 \times 10 + 3}{10} = \frac{30 + 3}{10} = \frac{33}{10} \) - \( 16 \frac{3}{5} = \frac{16 \times 5 + 3}{5} = \frac{80 + 3}{5} = \frac{83}{5} \) 2. **Find the LCM of the Denominators**: - The denominators are 25, 5, 10, and 5. The LCM is 50. 3. **Convert Each Fraction to Have the Same Denominator**: - For \( \frac{378}{25} \): \[ \frac{378}{25} = \frac{378 \times 2}{25 \times 2} = \frac{756}{50} \] - For \( \frac{24}{5} \): \[ \frac{24}{5} = \frac{24 \times 10}{5 \times 10} = \frac{240}{50} \] - For \( \frac{33}{10} \): \[ \frac{33}{10} = \frac{33 \times 5}{10 \times 5} = \frac{165}{50} \] - For \( \frac{83}{5} \): \[ \frac{83}{5} = \frac{83 \times 10}{5 \times 10} = \frac{830}{50} \] 4. **Combine the Fractions**: - Substitute back into the expression: \[ \frac{756}{50} + \frac{240}{50} - \frac{165}{50} - \frac{830}{50} = \frac{756 + 240 - 165 - 830}{50} = \frac{1}{50} \] ### Final Answer for Part (ii): \[ \frac{1}{50} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following : (i) 3/11+5/11+9/11 " (ii) " 3""2/3+1""3/5+2""4/5 .

Simplify the following : (i) 7""3/4-3""5/6+7/8" (ii) " 2""3/5+1""7/10-3""2/15

Simplify the following : (2""4/5-1""3/5) div (3""3/5-2""1/5) .

Simplify the following : (i) 3/4+2/5 " (ii) "3/7-5/28" (iii) "2""1/3+3""5/6 .

Simplify the following : (i) 9/14+3/14-5/14" (ii) "2""5/7-3""3/7+5""4/7 .

Simplify the following : 5xx2-[3-{-(7+2 of 4-19)}].

Simplify each of the following: (i) (16)^(1/5)xx(2)^(1/5) (ii) (243)^(1/ 4)/(3)^(1/ 4)

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)

Simplify the following : (i) 11-[7-{5-3(9-3-6)}] (ii) 16-[5-2+{7 of 2-(6div3xx2-1+3)}] .

Simplify each of the following : (i) [{((-1)/5)^(-2)}^2]^(-1)\ (ii) {(1/3)^(-2)-\ (1/2)^(-3)}-:(1/4)^(-2)