Home
Class 6
MATHS
If x=2 and y=5 find the values of : 7...

If x=2 and y=5 find the values of :
`7xy`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( 7xy \) when \( x = 2 \) and \( y = 5 \), we can follow these steps: ### Step 1: Write down the expression The expression we need to evaluate is: \[ 7xy \] ### Step 2: Substitute the values of \( x \) and \( y \) We know that \( x = 2 \) and \( y = 5 \). Now, we will substitute these values into the expression: \[ 7(2)(5) \] ### Step 3: Perform the multiplication First, multiply \( 2 \) and \( 5 \): \[ 2 \times 5 = 10 \] Now, substitute this result back into the expression: \[ 7 \times 10 \] ### Step 4: Multiply by 7 Now, multiply \( 7 \) by \( 10 \): \[ 7 \times 10 = 70 \] ### Final Answer Thus, the value of \( 7xy \) when \( x = 2 \) and \( y = 5 \) is: \[ \boxed{70} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=2 and y=5 find the values of : 2x+3y

If x=2 and y=5 find the values of : (3x)/(2y)

When x=4 and y=2 find the value of : x^(2)-2xy+y^(2)

If x = 2, y = 3 and z = -1, find the values of : (xy)/(z)

If x=4 and y=1, find the value of ((x)/(2)-(y)/(3))((x^(2))/(4)+(xy)/(6)+(y^(2))/(9)) .

If 4x^(2) + y^(2)=a and xy= b , find the value of 2x+y

If 2x-3y=10 and xy=16 , find the value of 8x^(3)-27y^(3) .

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If 1/x - 1/y=4 , find the value of (2x+4xy-2y)/(x-y-2xy) .

If x : y = 4 : 7 , find the value of (3x + 2y) : (5x + y) .