Home
Class 6
MATHS
If a = 3, b = 2 and c = -4, find the val...

If a = 3, b = 2 and c = -4, find the values of:
`c^(2)-a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( c^2 - a^2 \) given that \( a = 3 \), \( b = 2 \), and \( c = -4 \). ### Step-by-Step Solution: 1. **Identify the values of a and c:** - We know that \( a = 3 \) and \( c = -4 \). 2. **Substitute the values into the expression \( c^2 - a^2 \):** - We need to calculate \( c^2 \) and \( a^2 \). - Substitute: \( c^2 - a^2 = (-4)^2 - (3)^2 \). 3. **Calculate \( c^2 \) and \( a^2 \):** - Calculate \( (-4)^2 \): \[ (-4)^2 = 16 \] - Calculate \( (3)^2 \): \[ (3)^2 = 9 \] 4. **Subtract \( a^2 \) from \( c^2 \):** - Now substitute the calculated values back into the expression: \[ c^2 - a^2 = 16 - 9 \] 5. **Perform the subtraction:** - Calculate \( 16 - 9 \): \[ 16 - 9 = 7 \] 6. **Final Result:** - Therefore, the value of \( c^2 - a^2 \) is \( 7 \). ### Summary of the Solution: The value of \( c^2 - a^2 \) when \( a = 3 \) and \( c = -4 \) is \( 7 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = 3, b = 2 and c = -4, find the values of: 2a+3b-5c

If a = 3, b = 2 and c = -4, find the values of: 3ab-3b^(2)+4abc

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity

Find the value of 5C_3 + 4C_2

Find the value of 4C_1 - 2C_2

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If a : b = 3 : 2 and b : c = 4 : 5 , find a : c

If a=2, b-=3 and c=5 , then find the value of a^3+b^3+c^3 .

If a=2, b-=3 and c=5 , then find the value of a^3+b^3+c^3 .