Home
Class 6
MATHS
If a = 3, b = 2 and c = -4, find the val...

If a = 3, b = 2 and c = -4, find the values of:
`2a+3b-5c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2a + 3b - 5c\) given that \(a = 3\), \(b = 2\), and \(c = -4\), we will follow these steps: ### Step 1: Substitute the values of a, b, and c into the expression We start with the expression: \[ 2a + 3b - 5c \] Now, substitute \(a = 3\), \(b = 2\), and \(c = -4\): \[ 2(3) + 3(2) - 5(-4) \] ### Step 2: Perform the multiplication Now, we will calculate each term: \[ 2(3) = 6 \] \[ 3(2) = 6 \] \[ 5(-4) = -20 \quad \text{(but since we have a negative sign in front, it becomes +20)} \] So, we can rewrite the expression as: \[ 6 + 6 + 20 \] ### Step 3: Add the values together Now, we will add these values: \[ 6 + 6 = 12 \] \[ 12 + 20 = 32 \] ### Final Answer Thus, the value of the expression \(2a + 3b - 5c\) is: \[ \boxed{32} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = 3, b = 2 and c = -4, find the values of: c^(2)-a^(2)

If a = 3, b = 2 and c = -4, find the values of: 3ab-3b^(2)+4abc

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity

If a=2, b-=3 and c=5 , then find the value of a^3+b^3+c^3 .

If a=2, b-=3 and c=5 , then find the value of a^3+b^3+c^3 .

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : cos (A/2)

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : cot (A/2)

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : sin (A/2)

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : tan (A/2)