Home
Class 6
MATHS
If a = 3, b = 2 and c = -4, find the val...

If a = 3, b = 2 and c = -4, find the values of:
`3ab-3b^(2)+4abc`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \(3ab - 3b^2 + 4abc\) given \(a = 3\), \(b = 2\), and \(c = -4\), we will follow these steps: ### Step 1: Substitute the values of \(a\), \(b\), and \(c\) into the expression. We have: - \(a = 3\) - \(b = 2\) - \(c = -4\) Substituting these values into the expression: \[ 3(3)(2) - 3(2^2) + 4(3)(2)(-4) \] ### Step 2: Calculate each term separately. 1. Calculate \(3ab\): \[ 3ab = 3 \times 3 \times 2 = 18 \] 2. Calculate \(-3b^2\): \[ -3b^2 = -3 \times (2^2) = -3 \times 4 = -12 \] 3. Calculate \(4abc\): \[ 4abc = 4 \times 3 \times 2 \times (-4) = 4 \times 3 \times 2 \times -4 \] First, calculate \(4 \times 3 = 12\), then \(12 \times 2 = 24\), and finally \(24 \times -4 = -96\). ### Step 3: Combine all the terms. Now, we combine the results from the previous calculations: \[ 18 - 12 - 96 \] ### Step 4: Simplify the expression. 1. First, simplify \(18 - 12\): \[ 18 - 12 = 6 \] 2. Now, subtract \(96\): \[ 6 - 96 = -90 \] ### Final Answer: The value of the expression \(3ab - 3b^2 + 4abc\) is \(-90\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = 3, b = 2 and c = -4, find the values of: 2a+3b-5c

If a = 3, b = 2 and c = -4, find the values of: c^(2)-a^(2)

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc

If 3a + 4b =9 and ab= 2 find the value of : 27 a^(3) + 64 b ^(3)

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

When a=3 , b=0 , c=-2 , then find the value of : ab+2bc+3ca+4abc.

In triangle ABC , if a=3, b=4, and c=5, then find the value of cosA.

When a=3,b=0, c=-2 find the value of : (2ab+5bc-ac)/(a^(2)+3ab)

When a=3 , b=0 , c=-2 , find the value of : 1/2a^4 + 2/3b^2c^2 - 1/9a^2c^2 +c^3 .