Home
Class 6
MATHS
If p = 3, q = 2 and r = -1, find the val...

If p = 3, q = 2 and r = -1, find the values of
`2p^(2)+3a^(2)-r^(2)+2pr-5pqr`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2p^2 + 3q^2 - r^2 + 2pr - 5pqr\) given that \(p = 3\), \(q = 2\), and \(r = -1\), we will follow these steps: ### Step 1: Substitute the values of \(p\), \(q\), and \(r\) into the expression. The expression is: \[ 2p^2 + 3q^2 - r^2 + 2pr - 5pqr \] Substituting \(p = 3\), \(q = 2\), and \(r = -1\): \[ 2(3)^2 + 3(2)^2 - (-1)^2 + 2(3)(-1) - 5(3)(2)(-1) \] ### Step 2: Calculate each term. 1. Calculate \(2(3)^2\): \[ 2 \times 9 = 18 \] 2. Calculate \(3(2)^2\): \[ 3 \times 4 = 12 \] 3. Calculate \(-(-1)^2\): \[ -1 = -1 \] 4. Calculate \(2(3)(-1)\): \[ 2 \times 3 \times -1 = -6 \] 5. Calculate \(-5(3)(2)(-1)\): \[ -5 \times 3 \times 2 \times -1 = 30 \] ### Step 3: Combine all the calculated terms. Now we combine all the results: \[ 18 + 12 - 1 - 6 + 30 \] ### Step 4: Simplify the expression. 1. Combine \(18 + 12\): \[ 30 \] 2. Now, combine \(30 - 1\): \[ 29 \] 3. Next, combine \(29 - 6\): \[ 23 \] 4. Finally, combine \(23 + 30\): \[ 53 \] ### Final Result: The value of the expression is \(53\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If p = 4, q= 3 and r = -2, find the values of : (p^(2)+q^(2)-r^(2))/(pq+qr-pr)

If p = 3 , q = 2 and r = -1, find the values of (3p^(2)q+5r)/(2pq-3qr)

If p = 4,q = -3 and r = 2, find the value of : p^(3)+q^(3)-r^(3)-3pqr

If p = 4,q = 3 and r = -2, find the values of : (3pq+2qr^(2))/(p+q-r)

Find the value of : 1/2 p^(2) xx 4p^(2)q xx(-3 p)

Find the product of : 7pqr and 6p^(2)r^(2)

If p + 1/( p + 2 ) = 3 , find the value of ( p + 2 )^3 + 1/( p + 2 )^3

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

If P:Q = 2:9 and Q :R = 3:7, find P:R.

Find the value of 2p^2q-3pq^2+2p-3p+1 when p=3,q=-3