Home
Class 6
MATHS
If p = 3 , q = 2 and r = -1, find the va...

If p = 3 , q = 2 and r = -1, find the values of
`(3p^(2)q+5r)/(2pq-3qr)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3p^{2}q + 5r)/(2pq - 3qr)\) given \(p = 3\), \(q = 2\), and \(r = -1\), we will follow these steps: ### Step 1: Substitute the values of \(p\), \(q\), and \(r\) into the expression. We start with the expression: \[ \frac{3p^{2}q + 5r}{2pq - 3qr} \] Substituting \(p = 3\), \(q = 2\), and \(r = -1\): \[ \frac{3(3)^{2}(2) + 5(-1)}{2(3)(2) - 3(2)(-1)} \] ### Step 2: Calculate \(p^2\) and substitute it into the expression. Calculating \(p^2\): \[ p^2 = 3^2 = 9 \] Now substituting \(p^2\) into the expression: \[ \frac{3(9)(2) + 5(-1)}{2(3)(2) - 3(2)(-1)} \] ### Step 3: Simplify the numerator. Calculating the numerator: \[ 3(9)(2) = 54 \] \[ 5(-1) = -5 \] So the numerator becomes: \[ 54 - 5 = 49 \] ### Step 4: Simplify the denominator. Calculating the denominator: \[ 2(3)(2) = 12 \] \[ 3(2)(-1) = -6 \quad \text{(since } -3 \times 2 \times -1 = 6\text{)} \] So the denominator becomes: \[ 12 + 6 = 18 \] ### Step 5: Combine the results. Now we have: \[ \frac{49}{18} \] ### Step 6: Convert to decimal (if needed). To convert \(\frac{49}{18}\) to decimal: \[ 49 \div 18 \approx 2.72 \] Thus, the final value of the expression is: \[ \frac{49}{18} \text{ or approximately } 2.72 \] ### Final Answer: \[ \frac{49}{18} \text{ or } 2.72 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If p = 4,q = 3 and r = -2, find the values of : (3pq+2qr^(2))/(p+q-r)

If p = 4, q= 3 and r = -2, find the values of : (p^(2)+q^(2)-r^(2))/(pq+qr-pr)

If p = 3, q = 2 and r = -1, find the values of 2p^(2)+3a^(2)-r^(2)+2pr-5pqr

If p = 4,q = -3 and r = 2, find the value of : p^(3)+q^(3)-r^(3)-3pqr

If pgtqgt0 and prlt-1ltqr , then find the value of tan^(-1)((p-q)/(1+pq))+tan^(-1)((q-r)/(1+qr))+tan^(-1)((r-p)/(1+rp))

If P:Q = 2:9 and Q :R = 3:7, find P:R.

Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that AB = BA and r ne 0 , then the value of (3p-3s)/(5q-4r) is equal to

Find the value of 2p^2q-3pq^2+2p-3p+1 when p=3,q=-3

Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,2beta be the roots of the equation x^(2)-qx+r=0 , then the value of r is (1) (2)/(9)(p-q)(2q-p) (2) (2)/(9)(q-p)(2p-q) (3) (2)/(9)(q-2p)(2q-p) (4) (2)/(9)(2p-q)(2q-p)

If cos^-1p+cos^-1q+cos^-1r=pi(0 <= p,q,r <= 1). then the value of p^2+q^2+r^2+2pqr is