Home
Class 6
MATHS
for x=3 and y=-2 verify that (x-y)^(3)...

for x=3 and y=-2 verify that
`(x-y)^(3)=x^(3)-y^(3)-3xy(x-y)`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the equation \((x - y)^3 = x^3 - y^3 - 3xy(x - y)\) for \(x = 3\) and \(y = -2\), we will calculate both the left-hand side (LHS) and the right-hand side (RHS) of the equation step by step. ### Step 1: Calculate the Left-Hand Side (LHS) The left-hand side of the equation is: \[ LHS = (x - y)^3 \] Substituting the values of \(x\) and \(y\): \[ LHS = (3 - (-2))^3 \] This simplifies to: \[ LHS = (3 + 2)^3 = 5^3 \] Calculating \(5^3\): \[ LHS = 125 \] ### Step 2: Calculate the Right-Hand Side (RHS) The right-hand side of the equation is: \[ RHS = x^3 - y^3 - 3xy(x - y) \] Substituting the values of \(x\) and \(y\): \[ RHS = 3^3 - (-2)^3 - 3 \cdot 3 \cdot (-2) \cdot (3 - (-2)) \] Calculating \(3^3\) and \((-2)^3\): \[ 3^3 = 27 \quad \text{and} \quad (-2)^3 = -8 \] Now substituting these values into the RHS: \[ RHS = 27 - (-8) - 3 \cdot 3 \cdot (-2) \cdot (3 + 2) \] This simplifies to: \[ RHS = 27 + 8 - 3 \cdot 3 \cdot (-2) \cdot 5 \] Calculating \(27 + 8\): \[ RHS = 35 - 3 \cdot 3 \cdot (-2) \cdot 5 \] Calculating \(3 \cdot 3 \cdot (-2) \cdot 5\): \[ 3 \cdot 3 = 9 \quad \text{and} \quad 9 \cdot (-2) = -18 \] Thus: \[ -18 \cdot 5 = -90 \] Now substituting this back into the RHS: \[ RHS = 35 - (-90) = 35 + 90 = 125 \] ### Step 3: Compare LHS and RHS Now we have: \[ LHS = 125 \quad \text{and} \quad RHS = 125 \] Since \(LHS = RHS\), we can conclude that the equation is verified. ### Final Conclusion Thus, we have verified that: \[ (x - y)^3 = x^3 - y^3 - 3xy(x - y) \quad \text{for} \quad x = 3 \quad \text{and} \quad y = -2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For x = 2 and y = -3, verify the following: (x+y)^(3)=x^(3)+y^(3)+3x^(2)y+3xy^(2)

For x = 2 and y = -3, verify the following: (x-y)^(2)=x^(2)-2xy+y^(2)

For x = 2 and y = -3, verify the following: (x+y)^(2)=x^(2)+2xy+y^(2)

For x = 2 and y = -3, verify the following: (x+y)^(2)=(x-y)^(2)+4xy

For x = 2 and y = -3, verify the following: x^(2)-y^(2)=(x+y)(x-y)

Express each of the products as a monomials and verify the result for x=1, y=2: ( x y^3)xx(y x^3)xx(x y)

"(2x+3y)^3-(2x-3y)^3

If x+y+z=xyz , prove that: a) (3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/(1-3z^(2))= (3x-x^(3))/(1-3x^(2)).(3y-y^(3))/(1-3y^(2)).(3z-z^(3))/(1-3z^(2)) b) (x+y)/(1-xy) + (y+z)/(1-yz)+(z+x)/(1-zx)= (x+y)/(1-xy) .(y+z)/(1-yz).(z+x)/(1-zx)

If 2x-3y=10 and xy=16 , find the value of 8x^(3)-27y^(3) .

Simplify: (3x+2y)(4x+3y)-\ (2x-y)(7x-3y)