Home
Class 6
MATHS
Find the value of : 2x^(2)-3x+4 where...

Find the value of :
`2x^(2)-3x+4` where x=2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \(2x^2 - 3x + 4\) where \(x = 2\), we will substitute \(2\) for \(x\) in the expression and then simplify step by step. ### Step 1: Substitute \(x = 2\) into the expression We start with the expression: \[ 2x^2 - 3x + 4 \] Now, substituting \(x = 2\): \[ 2(2)^2 - 3(2) + 4 \] ### Step 2: Calculate \(2^2\) Calculate \(2^2\): \[ 2^2 = 4 \] Now substitute this value back into the expression: \[ 2(4) - 3(2) + 4 \] ### Step 3: Multiply \(2\) by \(4\) Now calculate \(2 \times 4\): \[ 2 \times 4 = 8 \] So the expression now looks like: \[ 8 - 3(2) + 4 \] ### Step 4: Calculate \(3 \times 2\) Now calculate \(3 \times 2\): \[ 3 \times 2 = 6 \] Substituting this back gives us: \[ 8 - 6 + 4 \] ### Step 5: Perform the subtraction and addition Now, we perform the operations from left to right: First, subtract \(6\) from \(8\): \[ 8 - 6 = 2 \] Now add \(4\): \[ 2 + 4 = 6 \] ### Final Result Thus, the value of the expression \(2x^2 - 3x + 4\) when \(x = 2\) is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : 3x^(2)+9x^(2)-x+8 where x=-2

Find the value of : 2x^(4)-5x^(3)+7x-3 where x=-3

Find the greatest value of x^2 y^3 , where x and y lie in the first quadrant on the line 3x+4y=5 .

If x=5, find the value of : 2x^(3)-4x^(2)-6x+25

Find the value of x , y 2x+3y=6 3x-2y=4 .

If 2x= 3+ sqrt7 , find the value of : 4x^(2) +(1)/(x^(2))

If x^(2) +(1)/(x^(2)) = 7. find the values of , 3x^(2) - (3)/(x^(2))

Find the value of x - (2-3x)/4+(3-2x)/5=2-x

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

If 4cos^(2)x=3 and x is an acute angle, find the value of : cos^(2)x+cot^(2)x