Home
Class 6
MATHS
Find the value of : 2x^(4)-5x^(3)+7x-...

Find the value of :
`2x^(4)-5x^(3)+7x-3` where x=-3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \(2x^4 - 5x^3 + 7x - 3\) when \(x = -3\), we will substitute \(-3\) into the expression and simplify step by step. ### Step-by-Step Solution: 1. **Substitute \(x = -3\) into the expression:** \[ 2(-3)^4 - 5(-3)^3 + 7(-3) - 3 \] 2. **Calculate \((-3)^4\):** \[ (-3)^4 = 81 \quad \text{(since the power is even, the result is positive)} \] 3. **Calculate \((-3)^3\):** \[ (-3)^3 = -27 \quad \text{(since the power is odd, the result is negative)} \] 4. **Substitute these values back into the expression:** \[ 2(81) - 5(-27) + 7(-3) - 3 \] 5. **Multiply:** - Calculate \(2 \times 81\): \[ 2 \times 81 = 162 \] - Calculate \(-5 \times -27\): \[ -5 \times -27 = 135 \quad \text{(negative times negative is positive)} \] - Calculate \(7 \times -3\): \[ 7 \times -3 = -21 \] 6. **Now substitute these results back into the expression:** \[ 162 + 135 - 21 - 3 \] 7. **Combine the values:** - First, add \(162 + 135\): \[ 162 + 135 = 297 \] - Then subtract \(21\): \[ 297 - 21 = 276 \] - Finally, subtract \(3\): \[ 276 - 3 = 273 \] 8. **Final Result:** \[ \text{The value of the expression is } 273. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : 4x^(3)-5x^(2)-6x+7 when x=3

Find the value of 3x^2-5x+8 for x=3

If x= -2 - sqrt3i , where i= sqrt(-1 , find the value of 2x^(4) + 5x^(3) + 7x^(2)-x+ 41

If a is a root of x^(2) - 3x-5=0 find the value of a^(4) - 2a^(3) - 7a^(2) -8a

Find the value of x - (2-3x)/4+(3-2x)/5=2-x

find the value of the polynomial 3x^(3)-4x^(2)+7x-5, , when x=3 and also when x=-3.

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(5. 001) , where f(x)=x^3-7x^2+15 .

Find the approximate value of f(3. 02), where f(x)=3x^2+5x+3.