Home
Class 6
MATHS
If x = 2, y = 3 and z = -1, find the val...

If x = 2, y = 3 and z = -1, find the values of :
`x-:y`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{x}{y} \) given \( x = 2 \) and \( y = 3 \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the expression**: We need to evaluate the expression \( \frac{x}{y} \). **Hint**: Remember that \( \frac{x}{y} \) means "x divided by y". 2. **Substitute the values**: We know that \( x = 2 \) and \( y = 3 \). So we can substitute these values into the expression. \[ \frac{x}{y} = \frac{2}{3} \] **Hint**: Replace the variables with their respective values carefully. 3. **Calculate the result**: Now we simply write the fraction \( \frac{2}{3} \) as our final answer. **Hint**: If you are unsure about fractions, remember that it represents a division of two numbers. ### Final Answer: The value of \( \frac{x}{y} \) is \( \frac{2}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 2, y = 3 and z = -1, find the values of : (2x-3y+4z)/(3x-z)

If x = 2, y = 3 and z = -1, find the values of : (xy)/(z)

If x=1, y=2 and z=3 , find the value of: x^3-z^3+y^3

If (x + 1, y - 2) = (3, -1) , find the values of x and y.

If x=1,\ y=-2\ a n d\ z=3, find the values of each of the following algebraic expressions: (i) x^3+y^3+z^3-3x y z (ii) 3x y^4-15 x^2y+4z

If x+y+z=1,x y+y z+z x=-1 and x y z=-1, find the value of x^3+y^3+z^3dot

If x+y+z=1,\ x y+y z+z x=-1\ \ a n d\ x y z=-1, find the value of x^3+y^3+z^3

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

If (x+1,\ 1)=(3,\ y-2) , find the value of x and y .