Home
Class 6
MATHS
If x = 2, y = 3 and z = -1, find the val...

If x = 2, y = 3 and z = -1, find the values of :
`(xy)/(z)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((xy)/(z)\) given the values \(x = 2\), \(y = 3\), and \(z = -1\), we can follow these steps: ### Step 1: Substitute the values of x, y, and z We start by substituting the values of \(x\), \(y\), and \(z\) into the expression \((xy)/(z)\). \[ \text{Expression: } \frac{xy}{z} = \frac{(2)(3)}{-1} \] ### Step 2: Calculate the product of x and y Next, we calculate the product of \(x\) and \(y\). \[ xy = 2 \times 3 = 6 \] ### Step 3: Substitute the product back into the expression Now we substitute the product back into the expression. \[ \frac{xy}{z} = \frac{6}{-1} \] ### Step 4: Divide the product by z Now we divide the product by \(z\). \[ \frac{6}{-1} = -6 \] ### Final Answer Thus, the value of \(\frac{xy}{z}\) is \(-6\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 2, y = 3 and z = -1, find the values of : x-:y

If x = 2, y = 3 and z = -1, find the values of : (2x-3y+4z)/(3x-z)

If x=1, y=2 and z=3 , find the value of: x^3-z^3+y^3

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

If x+y+z=1,x y+y z+z x=-1 and x y z=-1, find the value of x^3+y^3+z^3dot

If x=1,\ y=-2\ a n d\ z=3, find the values of each of the following algebraic expressions: (i) x^3+y^3+z^3-3x y z (ii) 3x y^4-15 x^2y+4z

If x+y+z=1,\ x y+y z+z x=-1\ \ a n d\ x y z=-1, find the value of x^3+y^3+z^3

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z