Home
Class 6
MATHS
If a = 2, b = 3 and c = -2, find the val...

If a = 2, b = 3 and c = -2, find the value of `a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( a^{2} + b^{2} + c^{2} - 2b - 2bc - 2ca + 3abc \) given that \( a = 2 \), \( b = 3 \), and \( c = -2 \), we will substitute the values step by step. ### Step 1: Substitute the values of a, b, and c into the expression. Given: - \( a = 2 \) - \( b = 3 \) - \( c = -2 \) The expression becomes: \[ (2)^{2} + (3)^{2} + (-2)^{2} - 2(3) - 2(3)(-2) - 2(2)(-2) + 3(2)(3)(-2) \] ### Step 2: Calculate each term. 1. Calculate \( a^{2} \): \[ (2)^{2} = 4 \] 2. Calculate \( b^{2} \): \[ (3)^{2} = 9 \] 3. Calculate \( c^{2} \): \[ (-2)^{2} = 4 \] 4. Calculate \( -2b \): \[ -2(3) = -6 \] 5. Calculate \( -2bc \): \[ -2(3)(-2) = 12 \] 6. Calculate \( -2ca \): \[ -2(2)(-2) = 8 \] 7. Calculate \( 3abc \): \[ 3(2)(3)(-2) = -36 \] ### Step 3: Combine all the calculated values. Now, substitute all the calculated values back into the expression: \[ 4 + 9 + 4 - 6 + 12 + 8 - 36 \] ### Step 4: Perform the addition and subtraction. 1. Start with \( 4 + 9 = 13 \) 2. Then \( 13 + 4 = 17 \) 3. Next, \( 17 - 6 = 11 \) 4. Then \( 11 + 12 = 23 \) 5. Next, \( 23 + 8 = 31 \) 6. Finally, \( 31 - 36 = -5 \) ### Final Answer: The value of the expression is \( -5 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = 3, b = 2 and c = -4, find the values of: c^(2)-a^(2)

If a = 3, b = 2 and c = -4, find the values of: 3ab-3b^(2)+4abc

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

When a=3,b=0, c=-2 find the value of : a^(3)+b^(3)+c^(3)-3abc

If a + b+ c= p and ab + bc + ca= q , find a^(2) +b^(2) + c^(2)

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a+b+c=15 and a^2+b^2+c^2=83 , find the value of a^3+b^3+c^3-3abc

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c