Home
Class 6
MATHS
If p = 4,q = -3 and r = 2, find the valu...

If p = 4,q = -3 and r = 2, find the value of `: p^(3)+q^(3)-r^(3)-3pqr`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( p^3 + q^3 - r^3 - 3pqr \) given \( p = 4 \), \( q = -3 \), and \( r = 2 \), we will follow these steps: ### Step 1: Substitute the values of p, q, and r into the expression. We start with the expression: \[ p^3 + q^3 - r^3 - 3pqr \] Substituting the values: \[ 4^3 + (-3)^3 - 2^3 - 3 \cdot 4 \cdot (-3) \cdot 2 \] ### Step 2: Calculate each term. Now we calculate each term separately: - \( 4^3 = 64 \) - \( (-3)^3 = -27 \) - \( 2^3 = 8 \) - \( 3 \cdot 4 \cdot (-3) \cdot 2 = 3 \cdot 4 \cdot -3 \cdot 2 = -72 \) ### Step 3: Substitute the calculated values back into the expression. Now we substitute these calculated values back into the expression: \[ 64 + (-27) - 8 - (-72) \] ### Step 4: Simplify the expression. Now, we simplify the expression step-by-step: 1. Start with \( 64 - 27 = 37 \) 2. Then, \( 37 - 8 = 29 \) 3. Finally, \( 29 + 72 = 101 \) ### Final Answer Thus, the value of the expression \( p^3 + q^3 - r^3 - 3pqr \) is: \[ \boxed{101} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p = 4, q= 3 and r = -2, find the values of : (p^(2)+q^(2)-r^(2))/(pq+qr-pr)

If p = 4,q = 3 and r = -2, find the values of : (3pq+2qr^(2))/(p+q-r)

If p = 3, q = 2 and r = -1, find the values of 2p^(2)+3a^(2)-r^(2)+2pr-5pqr

If p = 3 , q = 2 and r = -1, find the values of (3p^(2)q+5r)/(2pq-3qr)

If p/q=(2/3)^2-:(6/7)^0, find the value of (q/p)^3

If P:Q = 2:9 and Q :R = 3:7, find P:R.

Find the value of 2p^2q-3pq^2+2p-3p+1 when p=3,q=-3

Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that AB = BA and r ne 0 , then the value of (3p-3s)/(5q-4r) is equal to

If cos^-1p+cos^-1q+cos^-1r=pi(0 <= p,q,r <= 1). then the value of p^2+q^2+r^2+2pqr is

If p, q and r anre 3 statements, then the truth value of ((-p vv q) ^^ r) implies p is