Home
Class 6
MATHS
If p = 4,q = 3 and r = -2, find the valu...

If p = 4,q = 3 and r = -2, find the values of :
`(3pq+2qr^(2))/(p+q-r)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3pq + 2qr^2) / (p + q - r)\) given \(p = 4\), \(q = 3\), and \(r = -2\), we will follow these steps: ### Step 1: Substitute the values of p, q, and r into the expression. We start by substituting the values: - \(p = 4\) - \(q = 3\) - \(r = -2\) So, we have: \[ \frac{3(4)(3) + 2(3)(-2)^2}{4 + 3 - (-2)} \] ### Step 2: Calculate the numerator. Now, we will calculate the numerator \(3pq + 2qr^2\): 1. Calculate \(3pq\): \[ 3(4)(3) = 36 \] 2. Calculate \(2qr^2\): - First, calculate \(r^2\): \[ (-2)^2 = 4 \] - Now substitute into \(2qr^2\): \[ 2(3)(4) = 24 \] 3. Add both parts together: \[ 36 + 24 = 60 \] ### Step 3: Calculate the denominator. Next, we calculate the denominator \(p + q - r\): \[ 4 + 3 - (-2) = 4 + 3 + 2 = 9 \] ### Step 4: Combine the results. Now we can combine the results from the numerator and denominator: \[ \frac{60}{9} \] ### Step 5: Simplify the fraction. We can simplify \(\frac{60}{9}\) by dividing both the numerator and denominator by their greatest common divisor, which is 3: \[ \frac{60 \div 3}{9 \div 3} = \frac{20}{3} \] ### Final Answer: Thus, the final value of the expression is: \[ \frac{20}{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If p = 4, q= 3 and r = -2, find the values of : (p^(2)+q^(2)-r^(2))/(pq+qr-pr)

If p = 3 , q = 2 and r = -1, find the values of (3p^(2)q+5r)/(2pq-3qr)

If p = 4,q = -3 and r = 2, find the value of : p^(3)+q^(3)-r^(3)-3pqr

If p = 3, q = 2 and r = -1, find the values of 2p^(2)+3a^(2)-r^(2)+2pr-5pqr

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

If P:Q = 2:9 and Q :R = 3:7, find P:R.

If pgtqgt0 and prlt-1ltqr , then find the value of tan^(-1)((p-q)/(1+pq))+tan^(-1)((q-r)/(1+qr))+tan^(-1)((r-p)/(1+rp))

Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that AB = BA and r ne 0 , then the value of (3p-3s)/(5q-4r) is equal to

Find the value of 2p^2q-3pq^2+2p-3p+1 when p=3,q=-3

If p, q and r anre 3 statements, then the truth value of ((-p vv q) ^^ r) implies p is