Home
Class 6
MATHS
If p = 4, q= 3 and r = -2, find the valu...

If p = 4, q= 3 and r = -2, find the values of :
`(p^(2)+q^(2)-r^(2))/(pq+qr-pr)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((p^{2}+q^{2}-r^{2})/(pq+qr-pr)\) given \(p = 4\), \(q = 3\), and \(r = -2\), we will follow these steps: ### Step 1: Substitute the values of \(p\), \(q\), and \(r\) into the expression. The expression is: \[ \frac{p^{2}+q^{2}-r^{2}}{pq+qr-pr} \] Substituting the values: \[ \frac{4^{2}+3^{2}-(-2)^{2}}{4 \cdot 3 + 3 \cdot (-2) - 4 \cdot (-2)} \] ### Step 2: Calculate the squares in the numerator. Calculating \(4^{2}\), \(3^{2}\), and \((-2)^{2}\): \[ 4^{2} = 16, \quad 3^{2} = 9, \quad (-2)^{2} = 4 \] Now substitute these values into the numerator: \[ 16 + 9 - 4 \] ### Step 3: Simplify the numerator. Calculating the numerator: \[ 16 + 9 = 25 \] \[ 25 - 4 = 21 \] So, the numerator is \(21\). ### Step 4: Calculate the terms in the denominator. Calculating \(pq\), \(qr\), and \(-pr\): \[ pq = 4 \cdot 3 = 12 \] \[ qr = 3 \cdot (-2) = -6 \] \[ -pr = -4 \cdot (-2) = 8 \] Now substitute these values into the denominator: \[ 12 + (-6) + 8 \] ### Step 5: Simplify the denominator. Calculating the denominator: \[ 12 - 6 = 6 \] \[ 6 + 8 = 14 \] So, the denominator is \(14\). ### Step 6: Combine the results. Now we can combine the results from the numerator and denominator: \[ \frac{21}{14} \] ### Step 7: Simplify the fraction. We can simplify \(\frac{21}{14}\) by dividing both the numerator and denominator by their greatest common divisor (GCD), which is \(7\): \[ \frac{21 \div 7}{14 \div 7} = \frac{3}{2} \] ### Final Answer: The value of the expression is \(\frac{3}{2}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If p = 4,q = 3 and r = -2, find the values of : (3pq+2qr^(2))/(p+q-r)

If p = 4,q = -3 and r = 2, find the value of : p^(3)+q^(3)-r^(3)-3pqr

If p = 3, q = 2 and r = -1, find the values of 2p^(2)+3a^(2)-r^(2)+2pr-5pqr

If p = 3 , q = 2 and r = -1, find the values of (3p^(2)q+5r)/(2pq-3qr)

Find the excess of 4p^(2)-2pq +3q^(2) over 2p^(2)-pq +4q^(2) .

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

If p, q, r are rational then show that x^(2)-2px+p^(2)-q^(2)+2qr-r^(2)=0

If P:Q = 2:9 and Q :R = 3:7, find P:R.

Find the value of 2p^2q-3pq^2+2p-3p+1 when p=3,q=-3

if p: q :: r , prove that p : r = p^(2): q^(2) .