Home
Class 6
MATHS
When a=3,b=0, c=-2 find the value of : ...

When a=3,b=0, c=-2 find the value of : ` a^(3)+b^(3)+c^(3)-3abc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( a^3 + b^3 + c^3 - 3abc \) given \( a = 3 \), \( b = 0 \), and \( c = -2 \), we can follow these steps: ### Step 1: Substitute the values of a, b, and c into the expression. We start with the expression: \[ a^3 + b^3 + c^3 - 3abc \] Substituting the values: \[ 3^3 + 0^3 + (-2)^3 - 3 \cdot 3 \cdot 0 \cdot (-2) \] ### Step 2: Calculate each term. Now, we calculate each term separately: - \( 3^3 = 27 \) - \( 0^3 = 0 \) - \( (-2)^3 = -8 \) - \( 3 \cdot 3 \cdot 0 \cdot (-2) = 0 \) (since any number multiplied by 0 is 0) ### Step 3: Combine the results. Now, we can combine the results: \[ 27 + 0 - 8 - 0 \] This simplifies to: \[ 27 - 8 = 19 \] ### Final Answer: Thus, the value of \( a^3 + b^3 + c^3 - 3abc \) is: \[ \boxed{19} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

When a=3,b=0, c=-2 find the value of : (2ab+5bc-ac)/(a^(2)+3ab)

When a=3 , b=0 , c=-2 , find the value of : 1/2a^4 + 2/3b^2c^2 - 1/9a^2c^2 +c^3 .

When a=3 , b=0 , c=-2 , then find the value of : ab+2bc+3ca+4abc.

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc

If a+b+c=9\ \ \ a n d\ \ \ a b+b c+c a=26 , find the value of a^3+b^3+c^3-3a b c

If a+b+c=6 and a b+b c+c a=11 , find the value of a^3+b^3+c^3-3a b c

If a+b+c=15 and a^2+b^2+c^2=83 , find the value of a^3+b^3+c^3-3abc

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of a^(3)+b^(3)+c^(3).