Home
Class 6
MATHS
When a=3 , b=0 , c=-2 , find the ...

When a=3 , b=0 , c=-2 , find the value of : ` 1/2a^4 + 2/3b^2c^2 - 1/9a^2c^2 +c^3` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \frac{1}{2}a^4 + \frac{2}{3}b^2c^2 - \frac{1}{9}a^2c^2 + c^3 \) when \( a = 3 \), \( b = 0 \), and \( c = -2 \), we will substitute the values of \( a \), \( b \), and \( c \) step by step and simplify the expression. ### Step-by-Step Solution: 1. **Write down the expression**: \[ \frac{1}{2}a^4 + \frac{2}{3}b^2c^2 - \frac{1}{9}a^2c^2 + c^3 \] 2. **Substitute the values of \( a \), \( b \), and \( c \)**: \[ \frac{1}{2}(3)^4 + \frac{2}{3}(0)^2(-2)^2 - \frac{1}{9}(3)^2(-2)^2 + (-2)^3 \] 3. **Calculate \( a^4 \)**: \[ (3)^4 = 81 \] Thus, the first term becomes: \[ \frac{1}{2} \times 81 = \frac{81}{2} \] 4. **Calculate \( b^2c^2 \)**: \[ (0)^2 = 0 \quad \text{and} \quad (-2)^2 = 4 \] Therefore, the second term becomes: \[ \frac{2}{3} \times 0 \times 4 = 0 \] 5. **Calculate \( a^2c^2 \)**: \[ (3)^2 = 9 \quad \text{and} \quad (-2)^2 = 4 \] Thus, the third term becomes: \[ -\frac{1}{9} \times 9 \times 4 = -\frac{36}{9} = -4 \] 6. **Calculate \( c^3 \)**: \[ (-2)^3 = -8 \] 7. **Combine all the terms**: \[ \frac{81}{2} + 0 - 4 - 8 \] Simplifying this gives: \[ \frac{81}{2} - 4 - 8 = \frac{81}{2} - \frac{8}{2} - \frac{16}{2} = \frac{81 - 8 - 16}{2} = \frac{57}{2} \] ### Final Answer: \[ \frac{57}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = 3, b = 2 and c = -4, find the values of: 2a+3b-5c

If a = 3, b = 2 and c = -4, find the values of: c^(2)-a^(2)

When a=3,b=0, c=-2 find the value of : a^(3)+b^(3)+c^(3)-3abc

Find the value of : a + 2b - 5c when a = 2, b = -3 and c = 1

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c