Home
Class 11
MATHS
5sintheta.sin8theta=...

`5sintheta.sin8theta=`

A

`(3)/(2)(cos7theta-costheta)`

B

`(5)/(2)(cos9theta-cos7theta)`

C

`(5)/(2)(cos7theta-cos9theta)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 5 \sin \theta \sin 8\theta \), we will use the trigonometric identity for the product of sines. The identity states: \[ 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \] ### Step-by-Step Solution: 1. **Identify A and B**: In our case, let \( A = \theta \) and \( B = 8\theta \). 2. **Multiply and Divide by 2**: To use the identity, we can rewrite the expression: \[ 5 \sin \theta \sin 8\theta = \frac{5}{2} \cdot 2 \sin \theta \sin 8\theta \] 3. **Apply the Identity**: Now apply the identity: \[ 2 \sin \theta \sin 8\theta = \cos(\theta - 8\theta) - \cos(\theta + 8\theta) \] This simplifies to: \[ 2 \sin \theta \sin 8\theta = \cos(-7\theta) - \cos(9\theta) \] 4. **Use the Property of Cosine**: Since \( \cos(-x) = \cos(x) \), we can simplify further: \[ 2 \sin \theta \sin 8\theta = \cos(7\theta) - \cos(9\theta) \] 5. **Substitute Back**: Now substitute this back into our expression: \[ 5 \sin \theta \sin 8\theta = \frac{5}{2} (\cos(7\theta) - \cos(9\theta)) \] 6. **Final Result**: Thus, the final result is: \[ 5 \sin \theta \sin 8\theta = \frac{5}{2} \cos(7\theta) - \frac{5}{2} \cos(9\theta) \] ### Final Answer: \[ 5 \sin \theta \sin 8\theta = \frac{5}{2} (\cos(7\theta) - \cos(9\theta)) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-1

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos

Similar Questions

Explore conceptually related problems

Solve: sin4theta=sintheta

Solve that equation : sintheta+sin3theta+sin5theta=0.

Solve the following equation: sintheta+sin5theta=sin3theta

Find values of theta satisfying sintheta+sin5theta=sin3theta such that 0<=theta<=pi

Find the general values of theta from the following equations: sintheta+sin2theta+sin4theta+sin5theta=0

If sintheta+sin^2theta=1, then prove that cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta-1=0 Given that sintheta=1-sin^2theta=1-sin^2theta=cos^2theta

Solve the following equation: sintheta+sin2theta+sin3theta+sin4theta=0

Solve 4sintheta sin2thetasin4theta=sin3theta

Solve the following equation: sintheta+sin2theta+sin3theta=0

If sintheta-3sin2theta+sin3theta=costheta-3cos2theta+cos3theta , then one of the general value is: