Home
Class 11
MATHS
If f(x)=9x-x^(2), x in R, then f(a+1)-f(...

If `f(x)=9x-x^(2)`, `x in R`, then `f(a+1)-f(a-1)` is equal to

A

`4(4-a)`

B

`2(9-2a)`

C

`4(2+a)`

D

`2(4+a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(a+1) - f(a-1) \) given the function \( f(x) = 9x - x^2 \). ### Step-by-step Solution: 1. **Define the function**: We have \( f(x) = 9x - x^2 \). 2. **Calculate \( f(a+1) \)**: Substitute \( x = a + 1 \) into the function: \[ f(a+1) = 9(a + 1) - (a + 1)^2 \] Expanding this: \[ f(a+1) = 9a + 9 - (a^2 + 2a + 1) \] Simplifying: \[ f(a+1) = 9a + 9 - a^2 - 2a - 1 = -a^2 + 7a + 8 \] 3. **Calculate \( f(a-1) \)**: Substitute \( x = a - 1 \) into the function: \[ f(a-1) = 9(a - 1) - (a - 1)^2 \] Expanding this: \[ f(a-1) = 9a - 9 - (a^2 - 2a + 1) \] Simplifying: \[ f(a-1) = 9a - 9 - a^2 + 2a - 1 = -a^2 + 11a - 10 \] 4. **Find \( f(a+1) - f(a-1) \)**: Now, we subtract \( f(a-1) \) from \( f(a+1) \): \[ f(a+1) - f(a-1) = (-a^2 + 7a + 8) - (-a^2 + 11a - 10) \] Simplifying this: \[ f(a+1) - f(a-1) = -a^2 + 7a + 8 + a^2 - 11a + 10 \] The \( -a^2 \) and \( +a^2 \) cancel out: \[ = (7a - 11a) + (8 + 10) = -4a + 18 \] 5. **Factor the result**: We can factor out a 2: \[ -4a + 18 = 2(9 - 2a) \] ### Final Answer: Thus, \( f(a+1) - f(a-1) = 2(9 - 2a) \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-1

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos

Similar Questions

Explore conceptually related problems

if f(x) = x-[x], in R, then f^(')(1/2) is equal to

Let f(x) = x - [x] , x in R then f(1/2) is

If f(x)=4x-x^2, x in R , then write the value of f(a+1)-f(a-1)dot

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x+4) = x^(2) - 1 , then f(x) is equal to

If f : R rarr R be defined as f(x) = 2x + |x| , then f(2x) + f(-x) - f(x) is equal to

If the function f: R -{1,-1} to A definded by f(x)=(x^(2))/(1-x^(2)) , is surjective, then A is equal to

If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b, then f(2) is equal to

If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b, then f(2) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to