Home
Class 11
MATHS
If lim(x to (pi)/(2))(2^(-cosx)-1)/(x(x-...

If `lim_(x to (pi)/(2))(2^(-cosx)-1)/(x(x-(pi)/(2)))=(2)/(pi)logk`, `k gt 0` , the k is equal to

A

`2`

B

`4`

C

`(1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow these steps: ### Step 1: Identify the limit expression We need to evaluate the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{2^{-\cos x} - 1}{x \left(x - \frac{\pi}{2}\right)} \] ### Step 2: Substitute \(x = \frac{\pi}{2}\) Substituting \(x = \frac{\pi}{2}\) into the expression: - \(\cos\left(\frac{\pi}{2}\right) = 0\) - Thus, \(2^{-\cos\left(\frac{\pi}{2}\right)} = 2^0 = 1\) - Therefore, the numerator becomes \(1 - 1 = 0\). - The denominator becomes \(\frac{\pi}{2} \left(\frac{\pi}{2} - \frac{\pi}{2}\right) = \frac{\pi}{2} \cdot 0 = 0\). This gives us a \(0/0\) indeterminate form. ### Step 3: Apply L'Hôpital's Rule Since we have a \(0/0\) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator separately. #### Derivative of the numerator: The numerator is \(2^{-\cos x} - 1\). Using the chain rule: \[ \frac{d}{dx}(2^{-\cos x}) = 2^{-\cos x} \cdot \ln(2) \cdot \sin x \] Thus, the derivative of the numerator is: \[ 2^{-\cos x} \ln(2) \sin x \] #### Derivative of the denominator: The denominator is \(x\left(x - \frac{\pi}{2}\right)\). Using the product rule: \[ \frac{d}{dx}(x(x - \frac{\pi}{2})) = (x - \frac{\pi}{2}) + x \cdot 1 = 2x - \frac{\pi}{2} \] ### Step 4: Rewrite the limit Now, we rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{2}} \frac{2^{-\cos x} \ln(2) \sin x}{2x - \frac{\pi}{2}} \] ### Step 5: Substitute \(x = \frac{\pi}{2}\) again Substituting \(x = \frac{\pi}{2}\): - \(2^{-\cos\left(\frac{\pi}{2}\right)} = 1\) - \(\sin\left(\frac{\pi}{2}\right) = 1\) - The denominator becomes \(2\left(\frac{\pi}{2}\right) - \frac{\pi}{2} = \frac{\pi}{2}\). Thus, the limit becomes: \[ \frac{1 \cdot \ln(2) \cdot 1}{\frac{\pi}{2}} = \frac{2 \ln(2)}{\pi} \] ### Step 6: Set the limit equal to the given expression According to the problem, we have: \[ \frac{2 \ln(2)}{\pi} = \frac{2}{\pi} \log k \] ### Step 7: Solve for \(k\) By comparing both sides: \[ \ln(2) = \log k \] This implies: \[ k = 2 \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-1

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto(pi)/(2)) (1+cos2x)/((pi-2x)^(2)).

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

The lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3)) equals

Evaluate lim_(xto(pi)/(6)) (2-sqrt(3)cosx-sinx)/((6x-pi)^(2)).

Lim_(x to pi/2) (1-sin x)/((pi/2-x)^(2))

Lim_( x to pi/2) (1-sin x)/((pi-2x)^(2))

Evaluate lim_(xto pi/2)(1-"sin"x)^2/((pi/2-x)^(2))

Evaluate lim_(xto pi) (sin^(-1)(1+cosx).sec((x)/(2)))/((x-pi)).

The value of lim(x->pi) (sqrt(2+cosx)-1)/(x-pi)^2