Home
Class 11
MATHS
If f(x)=(x-4)/(2sqrt(x)), then find f'(1...

If `f(x)=(x-4)/(2sqrt(x))`, then find `f'(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(1) \) for the function \( f(x) = \frac{x - 4}{2\sqrt{x}} \), we will follow these steps: ### Step 1: Differentiate \( f(x) \) We will use the quotient rule for differentiation, which states that if \( f(x) = \frac{u}{v} \), then: \[ f'(x) = \frac{v \cdot u' - u \cdot v'}{v^2} \] where \( u = x - 4 \) and \( v = 2\sqrt{x} \). ### Step 2: Identify \( u \) and \( v \) - \( u = x - 4 \) - \( v = 2\sqrt{x} \) ### Step 3: Find \( u' \) and \( v' \) - \( u' = \frac{d}{dx}(x - 4) = 1 \) - \( v' = \frac{d}{dx}(2\sqrt{x}) = 2 \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}} \) ### Step 4: Apply the Quotient Rule Now, substituting \( u \), \( v \), \( u' \), and \( v' \) into the quotient rule formula: \[ f'(x) = \frac{(2\sqrt{x}) \cdot (1) - (x - 4) \cdot \left(\frac{1}{\sqrt{x}}\right)}{(2\sqrt{x})^2} \] This simplifies to: \[ f'(x) = \frac{2\sqrt{x} - \frac{x - 4}{\sqrt{x}}}{4x} \] ### Step 5: Simplify the Numerator To simplify the numerator: \[ f'(x) = \frac{2\sqrt{x} - \frac{x - 4}{\sqrt{x}}}{4x} = \frac{2\sqrt{x} - \frac{x}{\sqrt{x}} + \frac{4}{\sqrt{x}}}{4x} \] This becomes: \[ f'(x) = \frac{2\sqrt{x} - \sqrt{x} + \frac{4}{\sqrt{x}}}{4x} = \frac{\sqrt{x} + \frac{4}{\sqrt{x}}}{4x} \] ### Step 6: Combine the Terms Now, express \( \frac{4}{\sqrt{x}} \) as \( \frac{4}{\sqrt{x}} = \frac{4\sqrt{x}}{x} \): \[ f'(x) = \frac{\sqrt{x} + \frac{4\sqrt{x}}{x}}{4x} = \frac{\sqrt{x}(1 + \frac{4}{x})}{4x} \] ### Step 7: Substitute \( x = 1 \) Now, we substitute \( x = 1 \): \[ f'(1) = \frac{\sqrt{1}(1 + \frac{4}{1})}{4 \cdot 1} = \frac{1(1 + 4)}{4} = \frac{5}{4} \] ### Final Answer Thus, \( f'(1) = \frac{5}{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-1

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos

Similar Questions

Explore conceptually related problems

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=(x-4)/(2sqrt(x)) , then f^(prime)(1) is a. 5/4 b. 4/5 c. 1 d. 0

If f(x) = (x^2 + 9)/(sqrt(x-3)) find f(4) + f(5)

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x)=3sqrt((1+x^(2))^(4)) , find f'(1).

If f(x)=(1)/(sqrt(x+2sqrt(2x-4)))+(1)/(sqrt(x-2sqrt(2x-4))) for xgt2 then find f(11).

if: f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the range of f(x)

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If f(x)=sqrt(1-sin2x), then f'(x) equals

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .