Home
Class 11
MATHS
Differentiate by 1^(st) principle : f(x)...

Differentiate by `1^(st)` principle : `f(x)=sqrt(3x-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \sqrt{3x - 4} \) using the first principle, we will follow these steps: ### Step 1: Write the definition of the derivative using the first principle. The derivative \( f'(x) \) can be defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] ### Step 2: Substitute \( f(x) \) and \( f(x + h) \). We have: \[ f(x) = \sqrt{3x - 4} \] Now, calculate \( f(x + h) \): \[ f(x + h) = \sqrt{3(x + h) - 4} = \sqrt{3x + 3h - 4} \] Now, substitute these into the derivative formula: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{3x + 3h - 4} - \sqrt{3x - 4}}{h} \] ### Step 3: Rationalize the numerator. To simplify the expression, we will multiply and divide by the conjugate of the numerator: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{3x + 3h - 4} - \sqrt{3x - 4}\right) \left(\sqrt{3x + 3h - 4} + \sqrt{3x - 4}\right)}{h \left(\sqrt{3x + 3h - 4} + \sqrt{3x - 4}\right)} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{(3x + 3h - 4) - (3x - 4)}{h \left(\sqrt{3x + 3h - 4} + \sqrt{3x - 4}\right)} \] ### Step 4: Simplify the numerator. The numerator simplifies to: \[ 3h \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{3h}{h \left(\sqrt{3x + 3h - 4} + \sqrt{3x - 4}\right)} \] ### Step 5: Cancel \( h \) in the numerator and denominator. Assuming \( h \neq 0 \), we can cancel \( h \): \[ f'(x) = \lim_{h \to 0} \frac{3}{\sqrt{3x + 3h - 4} + \sqrt{3x - 4}} \] ### Step 6: Evaluate the limit as \( h \) approaches 0. As \( h \) approaches 0, \( \sqrt{3x + 3h - 4} \) approaches \( \sqrt{3x - 4} \): \[ f'(x) = \frac{3}{\sqrt{3x - 4} + \sqrt{3x - 4}} = \frac{3}{2\sqrt{3x - 4}} \] ### Final Answer: Thus, the derivative of the function \( f(x) = \sqrt{3x - 4} \) is: \[ f'(x) = \frac{3}{2\sqrt{3x - 4}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-1

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos

Similar Questions

Explore conceptually related problems

Differentiate by first principle f(x)=sqrt(3x+4)

Differentiate using 1^(st) principle : f(x)=(1)/(sqrt(2x+3))

Differentiate by 1^(st) principal f(x) = tan (1-2x)

Differentiate by 1^(st) , principle, f(x) = sec (1 - 2x).

Differentiate from first principles: 1. 2x

Differentiate from first principles: 4. (1)/( sqrtx)

Differentiate from first principles: 7. (1)/( sqrt (x+1))

Differentiate from first principles: 2. (x-1)^(2)

Differentiate from first principles: 11. (x+1)(2x-3)

Differentiate from first principles: 9. sqrt( 2x +3)