Home
Class 11
MATHS
lim(x to -1)f(x) exists, find c given f(...

`lim_(x to -1)f(x)` exists, find c given `f(x)={{:(x+2,x le -1),(cx^(2), x gt -1)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( c \) such that the limit \( \lim_{x \to -1} f(x) \) exists, we need to ensure that the right-hand limit (RHL) and left-hand limit (LHL) at \( x = -1 \) are equal. The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} x + 2 & \text{if } x \leq -1 \\ c x^2 & \text{if } x > -1 \end{cases} \] ### Step 1: Calculate the Right-Hand Limit (RHL) The right-hand limit as \( x \) approaches -1 is given by: \[ \lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} c x^2 \] Since \( x \) is approaching -1 from the right, we can substitute \( x = -1 + h \) where \( h \) approaches 0: \[ \lim_{h \to 0} c(-1 + h)^2 = \lim_{h \to 0} c(1 - 2h + h^2) = c(1 - 0 + 0) = c \] Thus, the right-hand limit is: \[ \text{RHL} = c \] ### Step 2: Calculate the Left-Hand Limit (LHL) The left-hand limit as \( x \) approaches -1 is given by: \[ \lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} (x + 2) \] Substituting \( x = -1 - h \) where \( h \) approaches 0: \[ \lim_{h \to 0} (-1 - h + 2) = \lim_{h \to 0} (1 - h) = 1 \] Thus, the left-hand limit is: \[ \text{LHL} = 1 \] ### Step 3: Set RHL equal to LHL For the limit \( \lim_{x \to -1} f(x) \) to exist, we need: \[ \text{RHL} = \text{LHL} \] This gives us: \[ c = 1 \] ### Conclusion The value of \( c \) that makes the limit exist is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-1

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-1

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-15

    ICSE|Exercise SECTION-C |8 Videos

Similar Questions

Explore conceptually related problems

f(x){{:(x^(3) - 1"," if x le 1 ),(x^(2) "," if x gt 1 ):}

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Consider the function f(x) = {{:(2, x le 0),(2, x gt 0):} Find lim_(x->2)

For what values of p does the Lim_(x to 1) f(x) exist , where f is defined by the rule f(x) = {:{(2px+3," if " x lt 1 ),(1 - px^(2)," if "x gt 1):}

Examine the differentiability of f, where f is defined by f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2 .

Discuss the continuity of the function f(x) ={(1+x^2,x le 1),(1-x, x gt 1):} at x=1.

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

Calculate lim_(x to 2) , where f(x) = {{:(3 if ,x le 2),(4 if, x gt 2):}