Home
Class 11
MATHS
If f(x)=3sqrt((1+x^(2))^(4)), find f'(1)...

If `f(x)=3sqrt((1+x^(2))^(4))`, find f'(1).

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(1) \) for the function \( f(x) = 3\sqrt{(1+x^2)^4} \), we will follow these steps: ### Step 1: Simplify the Function First, we simplify the function: \[ f(x) = 3\sqrt{(1+x^2)^4} \] Since \( \sqrt{a^4} = a^2 \), we can rewrite the function as: \[ f(x) = 3(1+x^2)^2 \] ### Step 2: Differentiate the Function Next, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[3(1+x^2)^2] \] Using the chain rule, we have: \[ f'(x) = 3 \cdot 2(1+x^2) \cdot \frac{d}{dx}(1+x^2) \] Now, differentiate \( 1+x^2 \): \[ \frac{d}{dx}(1+x^2) = 2x \] Substituting this back, we get: \[ f'(x) = 3 \cdot 2(1+x^2) \cdot 2x = 12x(1+x^2) \] ### Step 3: Evaluate the Derivative at \( x = 1 \) Now we need to find \( f'(1) \): \[ f'(1) = 12 \cdot 1 \cdot (1 + 1^2) = 12 \cdot 1 \cdot (1 + 1) = 12 \cdot 1 \cdot 2 = 24 \] ### Final Answer Thus, the value of \( f'(1) \) is: \[ \boxed{24} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)= {4 - (x-7)^(3)} , then find f^(-1)(x)=

If f(x) = (x^2 + 9)/(sqrt(x-3)) find f(4) + f(5)

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for

If f(x) = sqrt ((sec x -1)/(sec x + 1)) , find f'( pi /3)

If f(x) = sqrt ((sec x -1)/(sec x + 1)) , find f'( pi /3)

If f(x) = sqrt ((sec x -1)/(sec x + 1)) , find f'( pi /3)

f(x)=sqrt((log(x-1))/(x^(2)-2x-8)) . Find the domain of f(x).