Home
Class 11
MATHS
If "tan"(alpha)/(2) and "tan"(beta)/(2) ...

If `"tan"(alpha)/(2)` and `"tan"(beta)/(2)` are the roots of the equation `8x^(2)-26x+15=0`, then find the value of `"tan"((alpha+beta)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\tan\left(\frac{\alpha + \beta}{2}\right)\) given that \(\frac{\tan(\alpha)}{2}\) and \(\frac{\tan(\beta)}{2}\) are the roots of the equation \(8x^2 - 26x + 15 = 0\), we can follow these steps: ### Step 1: Identify the roots Let: \[ x_1 = \frac{\tan(\alpha)}{2}, \quad x_2 = \frac{\tan(\beta)}{2} \] The roots of the quadratic equation \(8x^2 - 26x + 15 = 0\) are \(x_1\) and \(x_2\). ### Step 2: Use the sum and product of roots From Vieta's formulas, we know: - The sum of the roots \(x_1 + x_2 = -\frac{b}{a} = \frac{26}{8} = \frac{13}{4}\) - The product of the roots \(x_1 \cdot x_2 = \frac{c}{a} = \frac{15}{8}\) ### Step 3: Substitute the roots Substituting the values of \(x_1\) and \(x_2\): \[ \frac{\tan(\alpha)}{2} + \frac{\tan(\beta)}{2} = \frac{13}{4} \] Multiplying through by 2 gives: \[ \tan(\alpha) + \tan(\beta) = \frac{13}{2} \] ### Step 4: Use the product of roots From the product of the roots: \[ \frac{\tan(\alpha)}{2} \cdot \frac{\tan(\beta)}{2} = \frac{15}{8} \] Multiplying through by 4 gives: \[ \tan(\alpha) \tan(\beta) = \frac{15}{2} \] ### Step 5: Use the tangent addition formula We need to find \(\tan\left(\frac{\alpha + \beta}{2}\right)\). We can use the formula: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \tan(\beta)} \] Substituting the values we found: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\frac{13}{2}}{1 - \frac{15}{2}} \] ### Step 6: Simplify the expression Calculating the denominator: \[ 1 - \frac{15}{2} = \frac{2}{2} - \frac{15}{2} = \frac{-13}{2} \] Now substituting back: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\frac{13}{2}}{\frac{-13}{2}} = -1 \] ### Final Answer Thus, the value of \(\tan\left(\frac{\alpha + \beta}{2}\right)\) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos

Similar Questions

Explore conceptually related problems

If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the equation 8x ^(2) -26x + 15 =0, then find the value of cos (alpha + beta).

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the value of (alpha^2/beta)^(1/3)+(beta^2/alpha)^(1/3) is

If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0 , then find the value of tan^(-1) alpha - tan^(-1) beta

If tan alpha tan beta are the roots of the equation x^2 + px +q =0(p!=0) then