Home
Class 11
MATHS
Solve : sin 2theta+sin 4theta+sin6 theta...

Solve : `sin 2theta+sin 4theta+sin6 theta=0,(-180^(@)le theta<= 180^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin 2\theta + \sin 4\theta + \sin 6\theta = 0 \) for \( -180^\circ \leq \theta \leq 180^\circ \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin 2\theta + \sin 4\theta + \sin 6\theta = 0 \] ### Step 2: Group terms We can rearrange the equation: \[ \sin 6\theta + \sin 4\theta + \sin 2\theta = 0 \] ### Step 3: Use the sine addition formula We can apply the sine addition formula: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Let \( A = 6\theta \) and \( B = 2\theta \). Then: \[ \sin 6\theta + \sin 2\theta = 2 \sin\left(4\theta\right) \cos\left(2\theta\right) \] Thus, we can rewrite the equation as: \[ 2 \sin 4\theta \cos 2\theta + \sin 4\theta = 0 \] ### Step 4: Factor out \( \sin 4\theta \) Factoring out \( \sin 4\theta \): \[ \sin 4\theta (2 \cos 2\theta + 1) = 0 \] ### Step 5: Set each factor to zero Now we have two cases to consider: **Case 1:** \[ \sin 4\theta = 0 \] This implies: \[ 4\theta = n\pi \quad \Rightarrow \quad \theta = \frac{n\pi}{4} \] **Case 2:** \[ 2 \cos 2\theta + 1 = 0 \] This simplifies to: \[ \cos 2\theta = -\frac{1}{2} \] This implies: \[ 2\theta = (2n + 1)\frac{\pi}{3} \quad \Rightarrow \quad \theta = \frac{(2n + 1)\pi}{6} \] ### Step 6: Find solutions within the given range Now we need to find the values of \( n \) that keep \( \theta \) within the range \( -180^\circ \leq \theta \leq 180^\circ \). **For Case 1:** \[ \theta = \frac{n\pi}{4} \] - For \( n = -7 \): \( \theta = -\frac{7\pi}{4} \) (not in range) - For \( n = -6 \): \( \theta = -\frac{3\pi}{2} \) (not in range) - For \( n = -5 \): \( \theta = -\frac{5\pi}{4} \) (valid) - For \( n = -4 \): \( \theta = -\pi \) (valid) - For \( n = -3 \): \( \theta = -\frac{3\pi}{4} \) (valid) - For \( n = -2 \): \( \theta = -\frac{\pi}{2} \) (valid) - For \( n = -1 \): \( \theta = -\frac{\pi}{4} \) (valid) - For \( n = 0 \): \( \theta = 0 \) (valid) - For \( n = 1 \): \( \theta = \frac{\pi}{4} \) (valid) - For \( n = 2 \): \( \theta = \frac{\pi}{2} \) (valid) - For \( n = 3 \): \( \theta = \frac{3\pi}{4} \) (valid) - For \( n = 4 \): \( \theta = \pi \) (valid) - For \( n = 5 \): \( \theta = \frac{5\pi}{4} \) (not in range) - For \( n = 6 \): \( \theta = \frac{3\pi}{2} \) (not in range) **For Case 2:** \[ \theta = \frac{(2n + 1)\pi}{6} \] - For \( n = -6 \): \( \theta = -\frac{5\pi}{6} \) (valid) - For \( n = -5 \): \( \theta = -\frac{3\pi}{6} = -\frac{\pi}{2} \) (valid) - For \( n = -4 \): \( \theta = -\frac{\pi}{6} \) (valid) - For \( n = -3 \): \( \theta = \frac{\pi}{6} \) (valid) - For \( n = -2 \): \( \theta = \frac{3\pi}{6} = \frac{\pi}{2} \) (valid) - For \( n = -1 \): \( \theta = \frac{5\pi}{6} \) (valid) - For \( n = 0 \): \( \theta = \frac{7\pi}{6} \) (not in range) ### Final Solutions The valid solutions for \( \theta \) are: - From Case 1: \( -\frac{5\pi}{4}, -\pi, -\frac{3\pi}{4}, -\frac{\pi}{2}, -\frac{\pi}{4}, 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi \) - From Case 2: \( -\frac{5\pi}{6}, -\frac{\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6} \)
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos

Similar Questions

Explore conceptually related problems

Solve : sin 9 theta = sin theta.

Solve sin 6 theta=sin 4 theta-sin 2 theta .

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

Solve sin 2 theta+cos theta=0 .

Solve: sin 2 theta = cos 3 theta.

Solve sin 3 theta + sin theta = sin 2 theta, 0 le theta le 2pi. Given the general solution.

Solve: sin3theta=sin2theta

Solve sin 3 theta-sin theta=4 cos^(2) theta-2 .

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Solve: sin2theta+sin4theta=costheta+cos3theta