Home
Class 11
MATHS
Using definition, differentiate w.r.t. '...

Using definition, differentiate w.r.t. 'x' `f(x)=cos^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \cos^2 x \) with respect to \( x \) using the definition of the derivative, we follow these steps: ### Step 1: Define the function Let \( y = f(x) = \cos^2 x \). ### Step 2: Write the expression for \( y + \Delta y \) When \( x \) increases by \( \Delta x \), the new value of \( y \) becomes: \[ y + \Delta y = \cos^2(x + \Delta x) \] ### Step 3: Set up the difference quotient The difference in \( y \) can be expressed as: \[ \Delta y = \cos^2(x + \Delta x) - \cos^2 x \] Thus, we can write the difference quotient: \[ \frac{\Delta y}{\Delta x} = \frac{\cos^2(x + \Delta x) - \cos^2 x}{\Delta x} \] ### Step 4: Use the identity for the difference of squares We can use the identity \( a^2 - b^2 = (a - b)(a + b) \) to rewrite \( \Delta y \): \[ \Delta y = \cos^2(x + \Delta x) - \cos^2 x = (\cos(x + \Delta x) - \cos x)(\cos(x + \Delta x) + \cos x) \] ### Step 5: Substitute into the difference quotient Substituting this back into our difference quotient gives: \[ \frac{\Delta y}{\Delta x} = \frac{(\cos(x + \Delta x) - \cos x)(\cos(x + \Delta x) + \cos x)}{\Delta x} \] ### Step 6: Find the limit as \( \Delta x \to 0 \) Now, we need to find the limit: \[ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \] We know that: \[ \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x} = -\sin x \] Thus, we can express the limit as: \[ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left( -\sin x (\cos(x + \Delta x) + \cos x) \right) \] As \( \Delta x \to 0 \), \( \cos(x + \Delta x) \to \cos x \), so: \[ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = -\sin x (2\cos x) = -2\sin x \cos x \] ### Step 7: Final result Thus, the derivative of \( f(x) = \cos^2 x \) with respect to \( x \) is: \[ \frac{dy}{dx} = -2\sin x \cos x \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x e^(5x)

Differentiate w.r.t x sin^4x

Differentiate w.r.t x tan (x^2)

Differentiate w.r.t to 'x', (sinx+cosx)^(2)

Differentiate w.r.t x (x sin x)^(3)

Differentiate w.r.t x sec (sec x)

Differentiate w.r.t x e^("sin x")

Differentiate w.r.t y = x^(-2)

Differentiate w.r.t y = x^(10)

Differentiate w.r.t x y = 8x^(8)