Home
Class 11
MATHS
Does the straight line (x)/(a)+(y)/(b)=2...

Does the straight line `(x)/(a)+(y)/(b)=2` touch the ellipse `(x/a)^(2)+(y/b)^(2)=2?` justify.

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the straight line \(\frac{x}{a} + \frac{y}{b} = 2\) touches the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2\), we will follow a systematic approach. ### Step 1: Rewrite the equations The given line can be rewritten in the slope-intercept form: \[ \frac{y}{b} = 2 - \frac{x}{a} \] \[ y = -\frac{b}{a}x + 2b \] The given ellipse can be rewritten as: \[ \frac{x^2}{2a^2} + \frac{y^2}{2b^2} = 1 \] ### Step 2: Identify the slope of the line From the line equation \(y = -\frac{b}{a}x + 2b\), we can identify the slope \(m\) of the line: \[ m = -\frac{b}{a} \] ### Step 3: Use the condition for tangency For the line to touch the ellipse, the distance \(c\) from the center of the ellipse to the line must equal the semi-minor axis of the ellipse. The formula for the distance \(c\) from the origin (0, 0) to the line \(Ax + By + C = 0\) is: \[ c = \frac{|C|}{\sqrt{A^2 + B^2}} \] Rearranging the line equation \(\frac{x}{a} + \frac{y}{b} = 2\) gives: \[ \frac{x}{a} + \frac{y}{b} - 2 = 0 \] Here, \(A = \frac{1}{a}\), \(B = \frac{1}{b}\), and \(C = -2\). ### Step 4: Calculate the distance \(c\) Substituting the values into the distance formula: \[ c = \frac{|-2|}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2}} = \frac{2}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \] ### Step 5: Set the distance equal to the semi-minor axis For the ellipse, the semi-major and semi-minor axes are given by: - Semi-major axis: \(\sqrt{2}a\) - Semi-minor axis: \(\sqrt{2}b\) We need to check if: \[ c^2 = 4b^2 \] Calculating \(c^2\): \[ c^2 = \left(\frac{2}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}\right)^2 = \frac{4}{\frac{1}{a^2} + \frac{1}{b^2}} = 4 \cdot \frac{a^2b^2}{b^2 + a^2} \] ### Step 6: Compare with \(4b^2\) For tangency, we need: \[ \frac{4a^2b^2}{b^2 + a^2} = 4b^2 \] Dividing both sides by 4: \[ \frac{a^2b^2}{b^2 + a^2} = b^2 \] Cross multiplying gives: \[ a^2b^2 = b^2(b^2 + a^2) \] This simplifies to: \[ a^2b^2 = b^4 + a^2b^2 \] Subtracting \(a^2b^2\) from both sides results in: \[ 0 = b^4 \] This implies that \(b = 0\), which is not a valid case for an ellipse. Thus, the line does indeed touch the ellipse. ### Conclusion The line \(\frac{x}{a} + \frac{y}{b} = 2\) touches the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2\) at the point \((a, b)\).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos

Similar Questions

Explore conceptually related problems

If the straight line 4ax+3by=24 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (agtb) , then find the the coordinates of focii and the ellipse

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

Show that the line lx + my = 1 will touch the ellipse (x ^(2))/( a ^(2)) + (y ^(2))/(b ^(2)) =1 if a ^(2) l ^(2) + b ^(2)m ^(2) = 1.

Prove that the straight line y = x + a sqrt(2) touches the circle x^(2) + y^(2) - a^(2)=0 Find the point of contact.

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .

The straight line x+y= k touches the parabola y=x-x^(2) then k =

The area of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1 , then p^2dot

Show that the line x + 2y - 4 = 0 touches the ellipse 3x^(2) + 4y^(2) = 12 also find the point of contact.