Home
Class 11
MATHS
Construct truth table for ~[p^^(~q)] and...

Construct truth table for `~[p^^(~q)]` and find which implication has same truth value.

Text Solution

AI Generated Solution

The correct Answer is:
To construct the truth table for the expression `~[p ∧ (~q)]`, we will follow these steps: ### Step 1: Identify the Variables We have two variables, \( p \) and \( q \). ### Step 2: Create the Truth Values for \( p \) and \( q \) The possible truth values for \( p \) and \( q \) are: - True (T) - False (F) ### Step 3: List All Combinations of Truth Values We will create a table with all combinations of truth values for \( p \) and \( q \). | \( p \) | \( q \) | |---------|---------| | T | T | | T | F | | F | T | | F | F | ### Step 4: Calculate \( \neg q \) Next, we will calculate the negation of \( q \) (denoted as \( \neg q \)). | \( p \) | \( q \) | \( \neg q \) | |---------|---------|---------------| | T | T | F | | T | F | T | | F | T | F | | F | F | T | ### Step 5: Calculate \( p \land \neg q \) Now, we will compute the conjunction \( p \land \neg q \). | \( p \) | \( q \) | \( \neg q \) | \( p \land \neg q \) | |---------|---------|---------------|-----------------------| | T | T | F | F | | T | F | T | T | | F | T | F | F | | F | F | T | F | ### Step 6: Calculate \( \neg [p \land \neg q] \) Finally, we will compute the negation of \( p \land \neg q \). | \( p \) | \( q \) | \( \neg q \) | \( p \land \neg q \) | \( \neg [p \land \neg q] \) | |---------|---------|---------------|-----------------------|------------------------------| | T | T | F | F | T | | T | F | T | T | F | | F | T | F | F | T | | F | F | T | F | T | ### Final Truth Table The final truth table for the expression `~[p ∧ (~q)]` is: | \( p \) | \( q \) | \( \neg q \) | \( p \land \neg q \) | \( \neg [p \land \neg q] \) | |---------|---------|---------------|-----------------------|------------------------------| | T | T | F | F | T | | T | F | T | T | F | | F | T | F | F | T | | F | F | T | F | T | ### Step 7: Find Implications with Same Truth Value Now, we need to find which implications have the same truth values as \( \neg [p \land \neg q] \). From the final column, we see that \( \neg [p \land \neg q] \) is true for the combinations: - \( (T, T) \) - \( (F, T) \) - \( (F, F) \) And it is false for \( (T, F) \).
Promotional Banner

Similar Questions

Explore conceptually related problems

construct truth table for p vv(~q)

Construct truth table for ~ [ p vv(~ q)]

Construct the truth table for p ^^ q.

construct truth table for p ^^ (q vv r)

construct truth table for (~p ^^ ~q) v(p ^^ ~q)

construct truth table for (p ^^q) v (~p ^^ q)

construct truth table for (p vv q)vv(r ^^ ~q)

Construct the truth table for [(~p)^^q]implies(pvvq)

Construct the truth table (~p ∧ ~q)vv(p∧~q)

Construct truth table for ( p rArr q) ^^ (q rArr p)